cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333617 Numbers that are divisible by the sum of the digits of all their divisors (A034690).

This page as a plain text file.
%I A333617 #20 Jan 15 2021 15:55:44
%S A333617 1,15,52,444,495,688,810,1782,1891,1950,2028,2058,2295,2970,3007,3312,
%T A333617 3510,4092,4284,4681,4687,4824,4992,5143,5307,5356,5487,5742,5775,
%U A333617 5829,6724,6750,6900,6913,6972,7141,7471,7560,7650,7722,7783,7807,8280,8325,8700,8721
%N A333617 Numbers that are divisible by the sum of the digits of all their divisors (A034690).
%C A333617 The corresponding quotients, k/A034690(k), are 1, 1, 2, 6, 5, 8, 6, 9, 61, ...
%H A333617 David A. Corneth, <a href="/A333617/b333617.txt">Table of n, a(n) for n = 1..10000</a>
%e A333617 15 is a term since its divisors are {1, 3, 5, 15}, and their sum of sums of digits is 1 + 3 + 5 + (1 + 5) = 15 which is a divisor of 15.
%t A333617 divDigSum[n_] := DivisorSum[n, Plus @@ IntegerDigits[#] &]; Select[Range[10^4], Divisible[#, divDigSum[#]] &]
%o A333617 (PARI) isok(k) = k % sumdiv(k, d, sumdigits(d)) == 0; \\ _Michel Marcus_, Mar 30 2020
%o A333617 (Python)
%o A333617 from sympy import divisors
%o A333617 def sd(n): return sum(map(int, str(n)))
%o A333617 def ok(n): return n%sum(sd(d) for d in divisors(n)) == 0
%o A333617 def aupto(limit): return [m for m in range(1, limit+1) if ok(m)]
%o A333617 print(aupto(8721)) # _Michael S. Branicky_, Jan 15 2021
%Y A333617 Cf. A007953, A034690, A093705, A337230, A005349.
%K A333617 nonn,base
%O A333617 1,2
%A A333617 _Amiram Eldar_, Mar 29 2020