cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333621 Numbers that are divisible by the total number of 1's in both the Zeckendorf and the dual Zeckendorf representations of all their divisors (A300837 and A333618).

This page as a plain text file.
%I A333621 #6 Mar 29 2020 17:14:31
%S A333621 1,2,4,126,416,442,3025,4588,9243,10428,11900,15070,18176,19436,20532,
%T A333621 26956,28582,32108,33028,35278,35929,37634,47678,50386,61952,69254,
%U A333621 74578,88984,93534,95120,96334,100326,102297,142894,144039,145768,147664,152817,163125,183002
%N A333621 Numbers that are divisible by the total number of 1's in both the Zeckendorf and the dual Zeckendorf representations of all their divisors (A300837 and A333618).
%e A333621 126 is a term since A300837(126) = 21 and A333618(126) = 7 are both divisors of 126.
%t A333621 zeckDigSum[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5] * # + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]];
%t A333621 zeckDivDigSum[n_] := DivisorSum[n, zeckDigSum[#] &];
%t A333621 fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr];
%t A333621 dualZeckSum[n_] := Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, Total[v[[i[[1, 1]] ;; -1]]]]];
%t A333621 dualZeckDivDigSum[n_] := DivisorSum[n, dualZeckSum[#] &];
%t A333621 Select[Range[10^4], Divisible[#, zeckDivDigSum[#]] && Divisible[#, dualZeckDivDigSum[#]] &]
%Y A333621 Intersection of A333619 and A333620.
%Y A333621 Cf. A007895, A112310, A300837, A330711, A333617, A333618.
%K A333621 nonn,base
%O A333621 1,2
%A A333621 _Amiram Eldar_, Mar 29 2020