A333625
Read terms e = T(n,k) in A333624 as Product(prime(k)^e) for n in A334556.
Original entry on oeis.org
1, 8, 8, 27, 27, 216, 512, 216, 512, 648, 648, 686, 12096, 46656, 262144, 46656, 262144, 12096, 686, 192000, 139968, 192000, 139968, 1866240, 179712, 74088, 91125, 74088, 91125, 179712, 1866240, 343000, 1000000, 5832000, 4251528, 5832000, 80621568, 13824000, 1073741824
Offset: 1
Relationship of this sequence to A334556 and A333624:
n A334556(n) a(n) Row n of A333624
-----------------------------------
1 1 1 0
2 11 8 3
3 13 8 3
4 39 27 0, 3
5 57 27 0, 3
6 83 216 3, 3
7 91 512 9
8 101 216 3, 3
9 109 512 9
10 151 648 3, 4
11 233 648 3, 4
12 543 686 1, 0, 0, 3
13 599 12096 6, 3, 0, 1
14 659 46656 6, 6
15 731 262144 18
16 805 46656 6, 6
...
Let b(n) = n written in binary and let L(n) = ceiling(log_2(n)) = A070939(n). Let => be a single iteration of XOR across pairs of bits in b(n). Let t(n) be the XOR triangle initiated by b(n).
a(1) = 0, since b(1) = 1 and row 1 of A333624 is {0}. Since the XOR triangle t(1) that results from a single 1-bit merely consists of that bit and since there are no zeros in the triangle t(1), we write the single term zero in row n of A333624. thus a(n) = prime(1)^0 = 2^0 = 1.
a(2) = 8 because row A334556(2) of A333624 (i.e., the 11th row) has {3}. b(11) = 1011 => 110 => 01 => 1 (a rotationally symmetrical t(11)). We have 3 isolated zeros thus row 11 of A333624 = {3}, therefore a(2) = prime(1)^3 = 2^3 = 8.
a(4) = 27 because row A334556(4) of A333624 (i.e., the 39th row) has {0, 3}. b(39) = 100111 => 10100 => 1110 => 001 => 01 => 1 (a rotationally symmetrical t(39)). We have 3 isolated triangles of zeros with edge length 2, thus row 39 of A333624 = {0, 3}, therefore a(4) = prime(1)^0 * prime(2)^3 = 2^0 * 3^3 = 27.
-
With[{s = Rest[Import["https://oeis.org/A334556/b334556.txt", "Data"][[All, -1]] ]}, Map[With[{w = NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[#, 2], Length@ # > 1 &]}, If[Length@ # == 0, 1, Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, #] &@ ReplacePart[ConstantArray[0, Max@ #[[All, 1]]], Map[#1 -> #2 & @@ # &, #]]] &@ Tally@ Flatten@ Array[If[# == 1, Map[If[First@ # == 1, Nothing, Length@ #] &, Split@ w[[#]] ], Map[If[First@ # == -1, Length@ #, Nothing] &, Split[w[[#]] - Most@ w[[# - 1]] ] ]] &, Length@ w]] /. -Infinity -> 0 &, s[[1 ;; 36]]]]
A334896
Read terms e = T(n,k) in A333624 as Product(prime(k)^e) for n in A334769.
Original entry on oeis.org
648, 648, 686, 12096, 12096, 686, 192000, 139968, 192000, 139968, 1866240, 179712, 179712, 1866240, 814968, 2101248, 102036672, 331776000, 102036672, 331776000, 2101248, 814968, 179712000, 4423680000, 1866240000, 131010048, 179712000, 4423680000, 1866240000, 131010048
Offset: 1
a(1) = 648, since b(A334769(1)) = b(151) = 10010111, which generates T(151) as shown below, replacing 1 with "@" and 0 with ".":
@ . . @ . @ @ @
@ . @ @ @ . .
@ @ . . @ .
. @ . @ @
@ @ @ .
. . @
. @
@
In this figure we see 3 zero-triangles of side length k = 1, and 4 of side length k = 2, therefore, T(1,1) = 3 and T(1,2) = 4. This becomes 2^3 * 3^4 = 8 * 81 = 648.
Relationship of this sequence to A334556 and A333624:
n A334769(n) a(n) Row n of A333624
--------------------------------------
1 151 648 3, 4
2 233 648 3, 4
3 543 686 1, 0, 0, 3
4 599 12096 6, 3, 0, 1
5 937 12096 6, 3, 0, 1
6 993 686 1, 0, 0, 3
7 1379 192000 9, 1, 3
8 1483 139968 6, 7
9 1589 192000 9, 1, 3
10 1693 139968 6, 7
11 2359 1866240 9, 6, 1
12 2391 179712 9, 3, 0, 0, 0, 1
13 3753 179712 9, 3, 0, 0, 0, 1
14 3785 1866240 9, 6, 1
15 8607 814968 3, 3, 0, 3, 1
16 9559 2101248 12, 3, 0, 0, 0, 0, 0, 1
...
-
With[{s = Rest[Import["https://oeis.org/A334769/b334769.txt", "Data"][[All, -1]]]}, Map[With[{w = NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[#, 2], Length@ # > 1 &]}, If[Length@ # == 0, 1, Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, #] &@ ReplacePart[ConstantArray[0, Max@ #[[All, 1]]], Map[#1 -> #2 & @@ # &, #]]] &@ Tally@ Flatten@ Array[If[# == 1, Map[If[First@ # == 1, Nothing, Length@ #] &, Split@ w[[#]]], Map[If[First@ # == -1, Length@ #, Nothing] &, Split[w[[#]] - Most@ w[[# - 1]]]]] &, Length@ w]] /. -Infinity -> 0 &, s[[1 ;; 29]]]]
A334771
a(n) = smallest m that generates a rotationally symmetrical XOR-triangle T(m) with a central triangle of zeros with side length n.
Original entry on oeis.org
543, 151, 2359, 599, 8607, 2391, 37687, 9559, 137631, 38231, 602935, 152919, 2202015, 611671, 9646903, 2446679, 35232159, 9786711, 154350391, 39146839, 563714463, 156587351, 2469606199, 626349399, 9019431327, 2505397591, 39513699127, 10021590359
Offset: 1
First 4 terms shown below, replacing 0 with “.” for clarity:
a(1) = 543; T(543):
1 . . . . 1 1 1 1 1
1 . . . 1 . . . .
1 . . 1 1 . . .
1 . 1 . 1 . .
1 1 1 1 1 .
. . . . 1
. . . 1
. . 1
. 1
1
a(2) = 151; T(151):
1 . . 1 . 1 1 1
1 . 1 1 1 . .
1 1 . . 1 .
. 1 . 1 1
1 1 1 .
. . 1
. 1
1
a(3) = 2359; T(2359):
1 . . 1 . . 1 1 . 1 1 1
1 . 1 1 . 1 . 1 1 . .
1 1 . 1 1 1 1 . 1 .
. 1 1 . . . 1 1 1
1 . 1 . . 1 . .
1 1 1 . 1 1 .
. . 1 1 . 1
. 1 . 1 1
1 1 1 .
. . 1
. 1
1
a(4) = 599; T(599):
1 . . 1 . 1 . 1 1 1
1 . 1 1 1 1 1 . .
1 1 . . . . 1 .
. 1 . . . 1 1
1 1 . . 1 .
. 1 . 1 1
1 1 1 .
. . 1
. 1
1
- Michael De Vlieger, Table of n, a(n) for n = 1..3314
- Michael De Vlieger, Central zero-triangles in rotationally symmetrical XOR-Triangles, 2020.
- Michael De Vlieger, Diagram montage of XOR-triangles of the first 64 terms.
- Michael De Vlieger, Correlation of A334771, A334769, A334556, and A333624.
- Index entries for sequences related to binary expansion of n
- Index entries for sequences related to XOR-triangles
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,17,0,0,0,-16).
-
Block[{f, s = Rest[Import["https://oeis.org/A334556/b334556.txt", "Data"][[All, -1]] ], t, u}, f[n_] := NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[n, 2], Length@ # > 1 &]; Set[{t, u}, Transpose@ Array[Block[{n = s[[#]]}, If[# == 0, Nothing, {n, #}] &@ FirstCase[MapIndexed[If[2 #2 > #3 + 1, Nothing, #1[[#2 ;; -#2]]] & @@ {#1, First[#2], Length@ #1} &, f[n][[1 ;; Ceiling[IntegerLength[#, 2]/(2 Sqrt[3])] + 3]] ], r_List /; FreeQ[r, 1] :> Length@ r] /. k_ /; MissingQ@ k -> 0] &, Length@ s - 1, 2]]; Array[If[! IntegerQ@ #, 0, t[[#]] ] &@ FirstPosition[u, #][[1]] &, Max@ u] ]
(* Second, more efficient program: *)
LinearRecurrence[{0, 0, 0, 17, 0, 0, 0, -16}, {543, 151, 2359, 599, 8607, 2391, 37687, 9559}, 28] (* Michael De Vlieger, May 20 2020 *)
-
Vec(x*(543 + 151*x + 2359*x^2 + 599*x^3 - 624*x^4 - 176*x^5 - 2416*x^6 - 624*x^7) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)*(1 + x^2)*(1 + 4*x^2)) + O(x^30)) \\ Colin Barker, May 21 2020
Showing 1-3 of 3 results.
Comments