This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333627 #10 Mar 31 2020 10:54:13 %S A333627 0,1,1,2,1,3,3,4,1,3,2,6,3,7,5,8,1,3,3,6,3,5,7,12,3,7,6,14,5,11,9,16, %T A333627 1,3,3,6,2,7,7,12,3,7,4,10,7,15,13,24,3,7,7,14,7,13,15,28,5,11,10,22, %U A333627 9,19,17,32,1,3,3,6,3,7,7,12,3,5,6,14,7,15,13 %N A333627 The a(n)-th composition in standard order is the sequence of run-lengths of the n-th composition in standard order. %C A333627 A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A333627 Claude Lenormand, <a href="/A318921/a318921.pdf">Deux transformations sur les mots</a>, Preprint, 5 pages, Nov 17 2003. %F A333627 A000120(n) = A070939(a(n)). %F A333627 A000120(a(n)) = A124767(n). %e A333627 The standard compositions and their run-lengths: %e A333627 0 ~ () -> () ~ 0 %e A333627 1 ~ (1) -> (1) ~ 1 %e A333627 2 ~ (2) -> (1) ~ 1 %e A333627 3 ~ (11) -> (2) ~ 2 %e A333627 4 ~ (3) -> (1) ~ 1 %e A333627 5 ~ (21) -> (11) ~ 3 %e A333627 6 ~ (12) -> (11) ~ 3 %e A333627 7 ~ (111) -> (3) ~ 4 %e A333627 8 ~ (4) -> (1) ~ 1 %e A333627 9 ~ (31) -> (11) ~ 3 %e A333627 10 ~ (22) -> (2) ~ 2 %e A333627 11 ~ (211) -> (12) ~ 6 %e A333627 12 ~ (13) -> (11) ~ 3 %e A333627 13 ~ (121) -> (111) ~ 7 %e A333627 14 ~ (112) -> (21) ~ 5 %e A333627 15 ~ (1111) -> (4) ~ 8 %e A333627 16 ~ (5) -> (1) ~ 1 %e A333627 17 ~ (41) -> (11) ~ 3 %e A333627 18 ~ (32) -> (11) ~ 3 %e A333627 19 ~ (311) -> (12) ~ 6 %t A333627 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A333627 Table[Total[2^(Accumulate[Reverse[Length/@Split[stc[n]]]])]/2,{n,0,30}] %Y A333627 Positions of first appearances are A333630. %Y A333627 All of the following pertain to compositions in standard order (A066099): %Y A333627 - The length is A000120. %Y A333627 - The partial sums from the right are A048793. %Y A333627 - The sum is A070939. %Y A333627 - Adjacent equal pairs are counted by A124762. %Y A333627 - Equal runs are counted by A124767. %Y A333627 - Strict compositions are ranked by A233564. %Y A333627 - The partial sums from the left are A272020. %Y A333627 - Constant compositions are ranked by A272919. %Y A333627 - Normal compositions are ranked by A333217. %Y A333627 - Heinz number is A333219. %Y A333627 - Anti-runs are counted by A333381. %Y A333627 - Adjacent unequal pairs are counted by A333382. %Y A333627 - Runs-resistance is A333628. %Y A333627 - First appearances of run-resistances are A333629. %Y A333627 Cf. A029931, A098504, A114994, A225620, A228351, A238279, A242882, A318928, A329744, A329747, A333489. %K A333627 nonn %O A333627 0,4 %A A333627 _Gus Wiseman_, Mar 30 2020