A333637 The number of cells which contain multiple squares of a Genealodron formed from 2^n - 1 equal-sized squares (when viewed from above).
0, 0, 0, 2, 7, 15, 27, 41, 57, 75, 95, 117, 141, 167, 195, 225, 257, 291, 327, 365, 405, 447, 491, 537, 585, 635, 687, 741, 797, 855, 915, 977, 1041, 1107, 1175, 1245, 1317, 1391, 1467, 1545, 1625, 1707, 1791, 1877, 1965, 2055, 2147, 2241, 2337, 2435, 2535, 2637, 2741, 2847, 2955, 3065, 3177, 3291, 3407, 3525
Offset: 1
Links
- Andrew Smith, Illustration of initial terms
Formula
Conjecture: for n>=6, a(n) = n^2 - n - 15. - Vaclav Kotesovec, Apr 07 2020
Conjectures from Colin Barker, Apr 07 2020: (Start)
G.f.: x^4*(1 + x^2)*(2 + x - 2*x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>8.
(End)
Comments