cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333637 The number of cells which contain multiple squares of a Genealodron formed from 2^n - 1 equal-sized squares (when viewed from above).

Original entry on oeis.org

0, 0, 0, 2, 7, 15, 27, 41, 57, 75, 95, 117, 141, 167, 195, 225, 257, 291, 327, 365, 405, 447, 491, 537, 585, 635, 687, 741, 797, 855, 915, 977, 1041, 1107, 1175, 1245, 1317, 1391, 1467, 1545, 1625, 1707, 1791, 1877, 1965, 2055, 2147, 2241, 2337, 2435, 2535, 2637, 2741, 2847, 2955, 3065, 3177, 3291, 3407, 3525
Offset: 1

Views

Author

Andrew Smith, Mar 30 2020

Keywords

Comments

See A179178 for the definition of a Genealodron. In this variation, a Genealodron is a rooted binary tree constructed from squares. One edge of each square is attached to its parent and the two adjacent edges to its child trees.
The first Genealodron consists of one square.
The second Genealodron is formed by joining another equal-sized square to the left edge and to the right edge of the first so that the second Genealodron is made up of three squares.
The third Genealodron is formed by joining squares to the upper and lower edges of both the second and third square of the second Genealodron so that the third Genealodron is made up of seven squares.
This continues, with the edges to which the new squares are attached alternating between left/right and upper/lower.
From the fourth generation onwards, some squares will overlap. a(n) is the number of cells which contain overlapping squares.

Crossrefs

Formula

Conjecture: for n>=6, a(n) = n^2 - n - 15. - Vaclav Kotesovec, Apr 07 2020
Conjectures from Colin Barker, Apr 07 2020: (Start)
G.f.: x^4*(1 + x^2)*(2 + x - 2*x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>8.
(End)