cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333645 a(n) = Sum_{d|n} uphi(d).

This page as a plain text file.
%I A333645 #11 Nov 12 2022 05:25:30
%S A333645 1,2,3,5,5,6,7,12,11,10,11,15,13,14,15,27,17,22,19,25,21,22,23,36,29,
%T A333645 26,37,35,29,30,31,58,33,34,35,55,37,38,39,60,41,42,43,55,55,46,47,81,
%U A333645 55,58,51,65,53,74,55,84,57,58,59,75,61,62,77,121,65,66,67,85,69,70
%N A333645 a(n) = Sum_{d|n} uphi(d).
%C A333645 Inverse Moebius transform of A047994.
%H A333645 Amiram Eldar, <a href="/A333645/b333645.txt">Table of n, a(n) for n = 1..10000</a>
%F A333645 G.f.: Sum_{k>=1} uphi(k) * x^k / (1 - x^k).
%F A333645 a(n) = Sum_{d|n} A023900(d) * A062949(n/d).
%F A333645 From _Amiram Eldar_, Nov 12 2022: (Start)
%F A333645 Multiplicative with a(p^e) = (p^(e+1) - e*p + e - 1)/(p-1).
%F A333645 Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^4/72) * Product_{p prime} (1 - (2*p-1)/p^3) = A152649 * A065464 = 0.5793804872... . (End)
%t A333645 uphi[1] = 1; uphi[n_] := Times @@ (#[[1]]^#[[2]] - 1 & /@ FactorInteger[n]); a[n_] := Sum[uphi[d], {d, Divisors[n]}]; Table[a[n], {n, 70}]
%t A333645 A023900[n_] := Sum[MoebiusMu[d] d, {d, Divisors[n]}]; A062949[n_] := Sum[EulerPhi[d] DivisorSigma[0, d], {d, Divisors[n]}]; a[n_] := Sum[A023900[d] A062949[n/d], {d, Divisors[n]}]; Table[a[n], {n, 70}]
%t A333645 f[p_,e_] := (p^(e+1) - e*p + e - 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100] (* _Amiram Eldar_, Nov 12 2022 *)
%o A333645 (PARI) uphi(n)=my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); \\ A047994
%o A333645 a(n) = sumdiv(n, d, uphi(d)); \\ _Michel Marcus_, Mar 31 2020
%Y A333645 Cf. A005117 (fixed points), A023900, A047994, A055653, A062949, A065464, A152649.
%K A333645 nonn,mult
%O A333645 1,2
%A A333645 _Ilya Gutkovskiy_, Mar 31 2020