This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333649 #20 Dec 17 2024 10:35:35 %S A333649 3,7,41,93,166,316,1449,6605,10015,13097,16284,19075,35137,70558, %T A333649 128436 %N A333649 Numbers k such that the second k binary digits of Pi represent a prime (leading zeros allowed). %C A333649 Numbers k such that floor(2^(2*k-2)*Pi) mod 2^k is prime. %C A333649 A random number of k binary digits has probability ~ constant/k of being prime, so heuristically we should expect the sequence to be infinite, but growing exponentially. %C A333649 a(16) > 2*10^5. - _Michael S. Branicky_, Dec 17 2024 %e A333649 a(2) = 7 is a term because the first 14 binary digits in Pi are 11.001001000011; the second 7 binary digits are 1000011, or 67 in decimal, which is prime. %p A333649 L:= floor(Pi*2^19998): %p A333649 select(n -> isprime(floor(L*2^(2*n-20000)) mod 2^n), [$1..10000]); %o A333649 (PARI) default(realprecision, 10^5); %o A333649 is(k) = ispseudoprime(floor(4^(k-1)*Pi)%2^k); \\ _Jinyuan Wang_, Mar 31 2020 %Y A333649 Cf. A004601, A065987. %K A333649 nonn,base,more %O A333649 1,1 %A A333649 _Robert Israel_, Mar 31 2020 %E A333649 a(9) from _Jinyuan Wang_, Mar 31 2020 %E A333649 a(10)-a(13) from _Chai Wah Wu_, Apr 06 2020 %E A333649 a(14)-a(15) from _Michael S. Branicky_, Dec 16 2024