This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333651 #39 Apr 01 2020 09:56:32 %S A333651 1,1,2,4,1,2,6,18,40,24,6,1,2,6,20,72,248,698,1100,1096,662,206,1,2,6, %T A333651 20,74,298,1228,4762,15984,40026,75524,109150,121130,99032,51964, %U A333651 11996,1072,1,2,6,20,74,300,1300,5844,26148,110942,427388,1393796,3790524,8648638,16727776,27529284,38120312,43012614,37385280,23166526,9496426,2286972,242764 %N A333651 Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-2, read by rows, where T(n,k) is the number of 2*(k+2)-cycles in the n X n grid graph which pass through NW corner (0,0). %H A333651 Seiichi Manyama, <a href="/A333651/b333651.txt">Rows n = 2..9, flattened</a> %F A333651 T(n,k) = A034010(k+2) for k <= n-2. %e A333651 T(3,0) = 1; %e A333651 +--* %e A333651 | | %e A333651 *--* %e A333651 T(3,1) = 2; %e A333651 +--*--* +--* %e A333651 | | | | %e A333651 *--*--* * * %e A333651 | | %e A333651 *--* %e A333651 T(3,2) = 4; %e A333651 +--*--* +--*--* +--*--* +--* %e A333651 | | | | | | | | %e A333651 * * * *--* *--* * * *--* %e A333651 | | | | | | | | %e A333651 *--*--* *--* *--* *--*--* %e A333651 Triangle starts: %e A333651 =================================================== %e A333651 n\k| 0 1 2 3 4 5 6 ... 10 ... 16 %e A333651 ---|----------------------------------------------- %e A333651 2 | 1; %e A333651 3 | 1, 2, 4; %e A333651 4 | 1, 2, 6, 18, 40, 24, 6; %e A333651 5 | 1, 2, 6, 20, 72, 248, 698, ... , 206; %e A333651 6 | 1, 2, 6, 20, 74, 298, 1228, .......... , 1072; %e A333651 7 | 1, 2, 6, 20, 74, 300, 1300, ... %e A333651 8 | 1, 2, 6, 20, 74, 300, 1302, ... %e A333651 9 | 1, 2, 6, 20, 74, 300, 1302, ... %o A333651 (Python) %o A333651 # Using graphillion %o A333651 from graphillion import GraphSet %o A333651 import graphillion.tutorial as tl %o A333651 def A333651(n): %o A333651 universe = tl.grid(n - 1, n - 1) %o A333651 GraphSet.set_universe(universe) %o A333651 cycles = GraphSet.cycles().including(1) %o A333651 return [cycles.len(2 * k).len() for k in range(2, n * n // 2 + 1)] %o A333651 print([i for n in range(2, 8) for i in A333651(n)]) %Y A333651 Row sums give A333246. %Y A333651 Cf. A003763, A034010, A302337, A333652, A333667, A333668. %K A333651 nonn,tabf %O A333651 2,3 %A A333651 _Seiichi Manyama_, Apr 01 2020