This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333652 #30 Apr 02 2020 04:30:19 %S A333652 1,1,3,1,6,17,17,6,1,10,45,167,404,570,460,186,1,15,100,506,2164,7726, %T A333652 20483,39401,56015,57632,37450,10340,1072,1,21,196,1316,7066,33983, %U A333652 147377,546400,1656592,4099732,8394433,14227675,19443270,20239262,14767415,7007270,1926990,230440 %N A333652 Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-n, read by rows, where T(n,k) is the number of 2*(k+n)-cycles in the n X n grid graph which pass through NW and SW corners. %H A333652 Seiichi Manyama, <a href="/A333652/b333652.txt">Rows n = 2..9, flattened</a> %F A333652 T(n,0) = 1. %F A333652 T(n,1) = A000217(n-1) for n > 2. %e A333652 T(3,0) = 1; %e A333652 +--* %e A333652 | | %e A333652 * * %e A333652 | | %e A333652 +--* %e A333652 T(3,1) = 3; %e A333652 +--*--* +--*--* +--* %e A333652 | | | | | | %e A333652 * * * *--* * *--* %e A333652 | | | | | | %e A333652 +--*--* +--* +--*--* %e A333652 Triangle starts: %e A333652 ==================================================================== %e A333652 n\k| 0 1 2 3 4 ... 7 ... 12 ... 17 ... 24 %e A333652 ---|---------------------------------------------------------------- %e A333652 2 | 1; %e A333652 3 | 1, 3; %e A333652 4 | 1, 6, 17, 17, 6; %e A333652 5 | 1, 10, 45, 167, 404, ... , 186; %e A333652 6 | 1, 15, 100, 506, 2164, .......... , 1072; %e A333652 7 | 1, 21, 196, 1316, 7066, .................. , 230440; %e A333652 8 | 1, 28, 350, 3038, 20317, ............................ , 4638576; %o A333652 (Python) %o A333652 # Using graphillion %o A333652 from graphillion import GraphSet %o A333652 import graphillion.tutorial as tl %o A333652 def A333652(n): %o A333652 universe = tl.grid(n - 1, n - 1) %o A333652 GraphSet.set_universe(universe) %o A333652 cycles = GraphSet.cycles().including(1).including(n) %o A333652 return [cycles.len(2 * k).len() for k in range(n, n * n // 2 + 1)] %o A333652 print([i for n in range(2, 8) for i in A333652(n)]) %Y A333652 Row sums give A333247. %Y A333652 Cf. A000217, A003763, A302337, A333651, A333667, A333668. %K A333652 nonn,tabf %O A333652 2,3 %A A333652 _Seiichi Manyama_, Apr 01 2020