This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333656 #24 Dec 06 2024 01:39:32 %S A333656 5,11,17,23,29,30,31,32,33,34,35,41,47,53,59,65,66,67,68,69,70,71,77, %T A333656 83,89,95,101,102,103,104,105,106,107,113,119,125,131,137,138,139,140, %U A333656 141,142,143,149,155,161,167,173,174,175,176,177,178,179,180,181,182,183,184 %N A333656 Numbers having at least one 5 in their representation in base 6. %C A333656 Complementary sequence to A037465. %H A333656 François Marques, <a href="/A333656/b333656.txt">Table of n, a(n) for n = 1..10000</a> %e A333656 22 is not in the sequence since it is 34_6 in base 6, but 23 is in the sequence since it is 35_6 in base 6. %p A333656 seq(`if`(numboccur(5, convert(n, base, 6))>0, n, NULL), n=0..100); %t A333656 Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 6 ], 5 ]>0)& ] %o A333656 (PARI) isok(m) = #select(x->(x==5), digits(m, 6)) >= 1; %o A333656 (Python) %o A333656 from gmpy2 import digits %o A333656 def A333656(n): %o A333656 def f(x): %o A333656 l = (s:=digits(x,6)).find('5') %o A333656 if l >= 0: s = s[:l]+'4'*(len(s)-l) %o A333656 return n+int(s,5) %o A333656 m, k = n, f(n) %o A333656 while m != k: m, k = k, f(k) %o A333656 return m # _Chai Wah Wu_, Dec 04 2024 %Y A333656 Cf. Numbers with at least one digit b-1 in base b : A074940 (b=3), A337250 (b=4), A337572 (b=5), this sequence (b=6), A337141 (b=7), A337239 (b=8), A338090 (b=9), A011539 (b=10), A095778 (b=11). %Y A333656 Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), A037465 (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), A171397 (b=11). %K A333656 nonn,base,easy %O A333656 1,1 %A A333656 _François Marques_, Sep 20 2020