This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333658 #20 Sep 08 2020 15:17:57 %S A333658 0,1,2,3,4,5,6,8,7,9,14,15,12,13,10,11,16,17,18,20,19,21,22,23,24,26, %T A333658 25,27,28,29,30,36,32,38,66,68,31,37,33,39,67,69,62,63,44,45,74,75,96, %U A333658 98,97,99,104,105,126,128,127,129,134,135,60,61,42,43,72,73 %N A333658 a(n) is the greatest number m not yet in the sequence such that the primorial base expansions of n and of m have the same digits (up to order but with multiplicity). %C A333658 Leading 0's are ignored. %C A333658 This sequence is a permutation of the nonnegative integers, which preserves the number of digits (A235224) and the sum of digits (A276150) in primorial base. %H A333658 Rémy Sigrist, <a href="/A333658/b333658.txt">Table of n, a(n) for n = 0..30029</a> %H A333658 Rémy Sigrist, <a href="/A333658/a333658.png">Scatterplot of the first 2*3*5*7*11*13*17 terms</a> %H A333658 Rémy Sigrist, <a href="/A333658/a333658.gp.txt">PARI program for A333658</a> %H A333658 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %H A333658 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A333658 a(A002110(n)) = A002110(n) for any n >= 0. %e A333658 For n = 42: %e A333658 - the primorial base representation of 42 is "1200", %e A333658 - there are five numbers m with the same multiset of digits: %e A333658 m prim(m) %e A333658 -- ------- %e A333658 34 "1020" %e A333658 42 "1200" %e A333658 61 "2001" %e A333658 62 "2010" %e A333658 66 "2100" %e A333658 - so a(34) = 66, %e A333658 a(42) = 62, %e A333658 a(61) = 61, %e A333658 a(62) = 42, %e A333658 a(66) = 34. %o A333658 (PARI) See Links section. %Y A333658 See A333659 and A337598 for similar sequences. %Y A333658 Cf. A002110, A235224, A276150. %K A333658 nonn,look,base %O A333658 0,3 %A A333658 _Rémy Sigrist_, Sep 02 2020