This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333668 #29 Apr 01 2020 20:34:20 %S A333668 1,1,1,4,6,1,12,58,156,146,1,24,244,1416,5435,12976,16654,7108,1072,1, %T A333668 40,696,7076,47965,236628,873610,2348664,4335724,4958224,3407276, %U A333668 1298704,205792 %N A333668 Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-2*n+2, read by rows, where T(n,k) is the number of 2*(k+2*n-2)-cycles in the n X n grid graph which pass through four corners ((0,0), (0,n-1), (n-1,n-1), (n-1,0)). %H A333668 Seiichi Manyama, <a href="/A333668/b333668.txt">Rows n = 2..9, flattened</a> %F A333668 T(n,0) = 1. %F A333668 T(n,1) = A046092(n-3). %e A333668 T(4,1) = 4; %e A333668 +--*--*--+ +--*--*--+ +--*--*--+ +--* *--+ %e A333668 | | | | | | | | | | %e A333668 *--* * * *--* * * * *--* * %e A333668 | | | | | | | | %e A333668 *--* * * *--* * *--* * * * %e A333668 | | | | | | | | | | %e A333668 +--*--*--+ +--*--*--+ +--* *--+ +--*--*--+ %e A333668 Triangle starts: %e A333668 ================================================================= %e A333668 n\k| 0 1 2 3 4 ... 8 ... 12 ... 18 %e A333668 ---|------------------------------------------------------------- %e A333668 2 | 1; %e A333668 3 | 1; %e A333668 4 | 1, 4, 6; %e A333668 5 | 1, 12, 58, 156, 146; %e A333668 6 | 1, 24, 244, 1416, 5435, ... , 1072; %e A333668 7 | 1, 40, 696, 7076, 47965, ........... , 205792; %e A333668 8 | 1, 60, 1590, 24960, 263770, ..................... , 4638576; %o A333668 (Python) %o A333668 # Using graphillion %o A333668 from graphillion import GraphSet %o A333668 import graphillion.tutorial as tl %o A333668 def A333668(n): %o A333668 universe = tl.grid(n - 1, n - 1) %o A333668 GraphSet.set_universe(universe) %o A333668 cycles = GraphSet.cycles() %o A333668 for i in [1, n, n * (n - 1) + 1, n * n]: %o A333668 cycles = cycles.including(i) %o A333668 return [cycles.len(2 * k).len() for k in range(2 * n - 2, n * n // 2 + 1)] %o A333668 print([i for n in range(2, 8) for i in A333668(n)]) %Y A333668 Row sums give A333466. %Y A333668 Cf. A003763, A046092, A302337, A333651, A333652, A333667. %K A333668 nonn,tabf %O A333668 2,4 %A A333668 _Seiichi Manyama_, Apr 01 2020