A333669 The smallest nontrivial quadratic residue modulo n.
4, 3, 2, 4, 4, 4, 3, 4, 3, 2, 4, 4, 2, 4, 4, 4, 4, 3, 2, 4, 4, 3, 4, 4, 4, 4, 2, 4, 3, 2, 4, 4, 3, 4, 3, 4, 2, 4, 4, 4, 4, 2, 2, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 2, 4, 4, 4, 3, 4, 4, 3, 4, 2, 4, 2, 3, 4, 4, 4, 3, 2, 4, 4, 2, 3, 4, 4, 4, 4, 4
Offset: 5
Examples
The squares modulo 5 are 1 and 4, therefore a(5) = 4. Modulo 6 the squares are 1, 3 and 4 which makes a(6) = 3. a(7) = 2 since 2 == 3^2 (mod 7).
Links
- Robert Israel, Table of n, a(n) for n = 5..10000
Crossrefs
Programs
-
Maple
f:= proc(n) uses numtheory; if quadres(2,n)=1 then 2 elif quadres(3,n)=1 then 3 else 4 fi end proc: map(f, [$5..100]); # Robert Israel, Sep 15 2020
-
Mathematica
qrQ[m_, n_] := Module[{k}, Reduce[Mod[m-k^2, n]==0, k, Integers] =!= False]; a[n_] := If[qrQ[2, n], 2, If[qrQ[3, n], 3, 4]]; a /@ Range[5, 100] (* Jean-François Alcover, Oct 25 2020 *)
-
PARI
a(n) = if(issquare(Mod(2,n)),2,issquare(Mod(3,n)),3,4)
Comments