This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333695 #15 Nov 21 2022 09:39:19 %S A333695 1,3,7,11,21,7,43,43,61,63,111,77,157,129,49,171,273,61,343,231,43, %T A333695 333,507,301,521,471,547,473,813,147,931,683,259,819,129,671,1333, %U A333695 1029,1099,903,1641,43,1807,111,427,1521,2163,399,2101,1563,637,1727,2757,547,2331 %N A333695 Numerators of coefficients in expansion of Sum_{k>=1} phi(k) * log(1/(1 - x^k)). %F A333695 a(n) = numerator of Sum_{d|n} phi(n/d) / d. %F A333695 a(n) = numerator of Sum_{k=1..n} 1 / gcd(n,k). %F A333695 a(n) = numerator of sigma_2(n^2) / (n * sigma_1(n^2)). %F A333695 a(p) = p^2 - p + 1 where p is prime. %F A333695 From _Amiram Eldar_, Nov 21 2022: (Start) %F A333695 a(n) = numerator(A057660(n)/n). %F A333695 Sum_{k=1..n} a(k)/A333696(k) ~ c * n^2, where c = zeta(3)/(2*zeta(2)) = 0.365381... (A346602). (End) %e A333695 1, 3/2, 7/3, 11/4, 21/5, 7/2, 43/7, 43/8, 61/9, 63/10, 111/11, 77/12, 157/13, 129/14, 49/5, ... %t A333695 nmax = 55; CoefficientList[Series[Sum[EulerPhi[k] Log[1/(1 - x^k)], {k, 1, nmax}], {x, 0, nmax}], x] // Numerator // Rest %t A333695 Table[Sum[EulerPhi[n/d]/d, {d, Divisors[n]}], {n, 55}] // Numerator %t A333695 Table[Sum[1/GCD[n, k], {k, n}], {n, 55}] // Numerator %t A333695 Table[DivisorSigma[2, n^2]/(n DivisorSigma[1, n^2]), {n, 55}] // Numerator %o A333695 (PARI) a(n) = numerator(sumdiv(n, d, eulerphi(n/d) / d)); \\ _Michel Marcus_, Apr 03 2020 %Y A333695 Cf. A000010, A000203, A001157, A018804, A057660, A071708, A072155, A074947, A074949, A333696 (denominators), A346602. %K A333695 nonn,frac %O A333695 1,2 %A A333695 _Ilya Gutkovskiy_, Apr 02 2020