This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333700 #19 Feb 16 2025 08:33:59 %S A333700 0,0,0,1,4,8,14,22,32,45,58,73,90,110,132,158,184,214,246,282,320,363, %T A333700 406,455,506,562,618,678,738,804,872,944,1018,1099,1180,1269,1358, %U A333700 1450,1544,1644,1744,1852,1962,2078,2196,2321,2446,2581,2718,2863 %N A333700 a(n) = Sum_{k=1..n} pi(k) * pi(n-k). %C A333700 Convolution of A000720 with itself. %H A333700 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/q/3128367">A curious equality of integrals involving the prime counting function?</a> %H A333700 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeCountingFunction.html">Prime Counting Function</a> %F A333700 G.f.: (1/(1 - x)^2) * (Sum_{k>=1} x^prime(k))^2. %F A333700 a(n) = Sum_{k=1..n} A046992(k) * A010051(n-k). %F A333700 a(n) = Sum_{k=1..n} k * A073610(n-k+1). %F A333700 From _Jianing Song_, Sep 27 2023: (Start) %F A333700 a(n-1) = Integral_{0..n} pi(x) * pi(n-x) dx, since Integral_{0..n} pi(x) * pi(n-x) dx = Sum_{k=1..n} Integral_{k-1..k} pi(x) * pi(n-x) dx = Sum_{k=1..n} pi(k-1) * pi(n-k) = Sum_{k=0..n-1} pi(k) * pi(n-1-k) = a(n-1). %F A333700 a(n) = (a(n-1) + a(n+1))/2 for n == 4 (mod 6) with n > 4, as shown in the Mathematics Stack Exchange link. (End) %t A333700 Table[Sum[PrimePi[k] PrimePi[n - k], {k, n}], {n, 50}] %t A333700 nmax = 50; CoefficientList[Series[(1/(1 - x)^2) Sum[x^Prime[k], {k, 1, nmax}]^2, {x, 0, nmax}], x] // Rest %o A333700 (PARI) a(n) = sum(k=1, n, primepi(k)*primepi(n-k)); \\ _Michel Marcus_, Apr 03 2020 %Y A333700 Cf. A000720, A002815, A010051, A034387, A046992, A073610. %K A333700 nonn %O A333700 1,5 %A A333700 _Ilya Gutkovskiy_, Apr 02 2020