cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333703 Numbers k such that k divides the sum of digits in primorial base of all numbers from 1 to k.

This page as a plain text file.
%I A333703 #14 Feb 22 2024 09:08:45
%S A333703 1,2,10,22,58,62,63,64,66,67,68,118,178,418,838,1258,1264,1265,1277,
%T A333703 1278,1678,2098,4618,9238,10508,10509,10510,10512,10513,10514,13858,
%U A333703 14704,14754,18478,23098,23102,23276,27718,60058,120118,138602,139016,139024,139134
%N A333703 Numbers k such that k divides the sum of digits in primorial base of all numbers from 1 to k.
%C A333703 The corresponding quotients are 1, 1, 2, 3, 4, 4, 4, 4, 4, ....
%H A333703 Amiram Eldar, <a href="/A333703/b333703.txt">Table of n, a(n) for n = 1..136</a>
%H A333703 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>.
%e A333703 10 is a term since the sum of digits in primorial base (A276150) of k from 1 to 10 is 1 + 1 + 2 + 2 + 3 + 1 + 2 + 2 + 3 + 3 = 20, which is divisible by 10.
%t A333703 max = 10; bases = Prime@Range[max, 1, -1]; nmax = Times @@ bases - 1; s[n_] := Plus @@ IntegerDigits[n, MixedRadix[bases]]; seq = {}; sum = 0; Do[sum += s[n]; If[Divisible[sum, n], AppendTo[seq, n]], {n, 1, 10^6}]; seq
%Y A333703 Cf. A049345, A276150, A095376, A114136, A333702, A333704, A333705.
%K A333703 nonn,base
%O A333703 1,2
%A A333703 _Amiram Eldar_, Apr 02 2020