A333704 Numbers k such that the total number of 1's in the Zeckendorf representation of the first k integers is a multiple of k.
1, 2, 3, 28, 29, 1119, 6133, 6134, 1141774, 6851892, 6854270, 6854271, 6880561, 219181118, 1113539751, 1187863323, 1200376103, 1247070050, 1247070068, 1247070100, 1247070104, 1247070130, 1251287495, 1252760510, 1257001167, 40920315565, 41404469929, 41473080530
Offset: 1
Keywords
Examples
3 is a term since the numbers 1, 2 and 3 in the Zeckendorf representation are 1, 10 and 100, and the sum of their numbers of digits of 1 is 1 + 1 + 1 = 3 which is divisible by 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..85 (terms below 10^13)
Programs
-
Mathematica
zeckSum[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; seq = {}; sum = 0; Do[sum += zeckSum[n]; If[Divisible[sum, n], AppendTo[seq, n]], {n, 1, 10^6}]; seq
Extensions
More terms from Amiram Eldar, Oct 12 2023
Comments