This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333706 #36 Feb 09 2023 14:55:10 %S A333706 1,0,1,0,0,2,0,0,4,6,0,2,16,20,24,0,14,44,80,108,120,0,90,200,384,544, %T A333706 672,720,0,646,1288,2240,3264,4128,4800,5040,0,5242,9512,15424,23040, %U A333706 28992,34752,38880,40320,0,47622,78652,123456,176832,231936,280512,323520,352800,362880 %N A333706 Number T(n,k) of permutations p of [n] such that |p(i+k) - p(i)| <> k for i in [n-k]; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A333706 T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = n! for k>=n. %H A333706 Alois P. Heinz, <a href="/A333706/b333706.txt">Rows n = 0..20, flattened</a> %H A333706 Roberto Tauraso, <a href="http://www.emis.de/journals/INTEGERS/papers/g11/g11.Abstract.html">The Dinner Table Problem: The Rectangular Case</a>, INTEGERS: Electronic Journal of Combinatorial Number Theory, Vol. 6 (2006), #A11. %H A333706 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a> %e A333706 Triangle T(n,k) begins: %e A333706 1; %e A333706 0, 1; %e A333706 0, 0, 2; %e A333706 0, 0, 4, 6; %e A333706 0, 2, 16, 20, 24; %e A333706 0, 14, 44, 80, 108, 120; %e A333706 0, 90, 200, 384, 544, 672, 720; %e A333706 0, 646, 1288, 2240, 3264, 4128, 4800, 5040; %e A333706 0, 5242, 9512, 15424, 23040, 28992, 34752, 38880, 40320; %e A333706 ... %Y A333706 Columns k=0-10 (for n>=k) give: A000007, A002464, A110128, A117574, A189255, A189256, A189271, A360384, A360386, A360462, A360463. %Y A333706 Main diagonal gives A000142. %Y A333706 T(2n,n) gives A189849. %Y A333706 T(n+1,n) gives 4*A138772(n). %Y A333706 T(n+2,n) gives 16*A333804(n). %Y A333706 Cf. A000170 (condition is satisfied for all k), A248686 (p(i) at distance k are sorted). %K A333706 nonn,tabl %O A333706 0,6 %A A333706 _Alois P. Heinz_, Apr 02 2020