cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333737 Array read by antidiagonals: T(n,k) is the number of non-isomorphic n X n nonnegative integer symmetric matrices with all row and column sums equal to k up to permutations of rows and columns.

This page as a plain text file.
%I A333737 #15 Mar 31 2025 15:21:13
%S A333737 1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,3,1,1,1,1,3,5,5,1,1,1,1,3,9,12,7,
%T A333737 1,1,1,1,4,13,33,29,11,1,1,1,1,4,20,74,142,79,15,1,1,1,1,5,28,163,556,
%U A333737 742,225,22,1,1,1,1,5,39,319,1919,5369,4454,677,30,1,1
%N A333737 Array read by antidiagonals: T(n,k) is the number of non-isomorphic n X n nonnegative integer symmetric matrices with all row and column sums equal to k up to permutations of rows and columns.
%C A333737 Terms may be computed without generating each matrix by enumerating the number of matrices by column sum sequence using dynamic programming. A PARI program showing this technique for the labeled case is given in A188403. Burnside's lemma as applied in A318805 can be used to extend this method to the unlabeled case.
%H A333737 Andrew Howroyd, <a href="/A333737/b333737.txt">Table of n, a(n) for n = 0..377</a>
%H A333737 Ming Yean Lim, <a href="https://arxiv.org/abs/2503.21108">The number of irreducibles in the plethysm s_lambda[s_m]</a>, arXiv:2503.21108 [math.CO], 2025. See p. 8.
%e A333737 Array begins:
%e A333737 ==============================================
%e A333737 n\k | 0 1  2   3    4     5      6       7
%e A333737 ----+-----------------------------------------
%e A333737   0 | 1 1  1   1    1     1      1       1 ...
%e A333737   1 | 1 1  1   1    1     1      1       1 ...
%e A333737   2 | 1 1  2   2    3     3      4       4 ...
%e A333737   3 | 1 1  3   5    9    13     20      28 ...
%e A333737   4 | 1 1  5  12   33    74    163     319 ...
%e A333737   5 | 1 1  7  29  142   556   1919    5793 ...
%e A333737   6 | 1 1 11  79  742  5369  31781  156191 ...
%e A333737   7 | 1 1 15 225 4454 64000 692599 5882230 ...
%e A333737   ...
%e A333737 The T(3,3) = 5 matrices are:
%e A333737    [0 0 3]  [0 1 2]  [0 1 2]  [1 0 2]  [1 1 1]
%e A333737    [0 3 0]  [1 1 1]  [1 2 0]  [0 3 0]  [1 1 1]
%e A333737    [3 0 0]  [2 1 0]  [2 0 1]  [2 0 1]  [1 1 1]
%Y A333737 Rows n=0..5 are A000012, A000012, A008619, A106607, A333886, A333887.
%Y A333737 Columns n=0..5 are A000012, A000012, A000041, A333888, A333889, A333890.
%Y A333737 Main diagonal is A333738.
%Y A333737 Cf. A188403 (labeled case), A333159 (binary), A333733 (not necessarily symmetric).
%Y A333737 Cf. A318805, A333893.
%K A333737 nonn,tabl
%O A333737 0,13
%A A333737 _Andrew Howroyd_, Apr 08 2020