This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333750 #10 Apr 22 2020 17:16:02 %S A333750 0,0,0,1,0,1,0,1,1,1,0,2,0,1,1,2,0,2,0,2,1,1,0,3,1,1,1,2,0,3,0,2,1,1, %T A333750 1,3,0,1,1,3,0,2,0,2,2,1,0,3,1,2,1,2,0,2,1,3,1,1,0,4,0,1,2,3,1,2,0,2, %U A333750 1,3,0,4,0,1,2,2,1,2,0,4,2,1,0,4,1,1,1,3,0,4,1,2,1,1,1,4,0,2,2,3 %N A333750 Number of prime power divisors of n that are <= sqrt(n). %H A333750 Robert Israel, <a href="/A333750/b333750.txt">Table of n, a(n) for n = 1..10000</a> %F A333750 G.f.: Sum_{p prime, k>=1} x^(p^(2*k)) / (1 - x^(p^k)). %p A333750 f:= proc(n) local p; %p A333750 add(min(padic:-ordp(n,p),floor(1/2*log[p](n))),p=numtheory:-factorset(n)) %p A333750 end proc: %p A333750 map(f, [$1..200]); # _Robert Israel_, Apr 22 2020 %t A333750 Table[DivisorSum[n, 1 &, # <= Sqrt[n] && PrimePowerQ[#] &], {n, 1, 100}] %t A333750 nmax = 100; CoefficientList[Series[Sum[Boole[PrimePowerQ[k]] x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest %o A333750 (PARI) a(n) = sumdiv(n, d, (d^2<=n) && isprimepower(d)); \\ _Michel Marcus_, Apr 03 2020 %Y A333750 Cf. A001222, A038548, A063962, A069288, A069291, A073093, A246655, A333748, A333749, A333753. %K A333750 nonn %O A333750 1,12 %A A333750 _Ilya Gutkovskiy_, Apr 03 2020