This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333753 #9 Feb 15 2023 13:43:34 %S A333753 0,0,0,2,0,2,0,2,3,2,0,5,0,2,3,6,0,5,0,6,3,2,0,9,5,2,3,6,0,10,0,6,3,2, %T A333753 5,9,0,2,3,11,0,5,0,6,8,2,0,9,7,7,3,6,0,5,5,13,3,2,0,14,0,2,10,14,5,5, %U A333753 0,6,3,14,0,17,0,2,8,6,7,5,0,19,12,2,0,16,5,2,3,14,0,19 %N A333753 Sum of prime power divisors of n that are <= sqrt(n). %H A333753 Robert Israel, <a href="/A333753/b333753.txt">Table of n, a(n) for n = 1..10000</a> %F A333753 G.f.: Sum_{p prime, k>=1} p^k * x^(p^(2*k)) / (1 - x^(p^k)). %p A333753 f:= proc(n) local F,i,j,t; %p A333753 F:= ifactors(n)[2]; %p A333753 t:= 0; %p A333753 for i from 1 to nops(F) do %p A333753 j:= min(F[i,2],ilog[F[i,1]^2](n)); %p A333753 t:= t + (F[i,1]^j-1)*F[i,1]/(F[i,1]-1) %p A333753 od; %p A333753 t %p A333753 end proc: %p A333753 map(f, [$1..100]); # _Robert Israel_, Feb 15 2023 %t A333753 Table[DivisorSum[n, # &, # <= Sqrt[n] && PrimePowerQ[#] &], {n, 1, 90}] %t A333753 nmax = 90; CoefficientList[Series[Sum[Boole[PrimePowerQ[k]] k x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest %o A333753 (PARI) a(n) = sumdiv(n, d, if ((d^2<=n) && isprimepower(d), d)); \\ _Michel Marcus_, Apr 03 2020 %Y A333753 Cf. A023889, A066839, A069289, A069293, A097974, A246655, A333750, A333751, A333752. %K A333753 nonn %O A333753 1,4 %A A333753 _Ilya Gutkovskiy_, Apr 03 2020