This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333758 #21 Nov 27 2022 11:03:19 %S A333758 1,1,1,1,1,1,1,3,3,1,1,5,11,5,1,1,11,36,36,11,1,1,21,122,191,122,21,1, %T A333758 1,43,408,1123,1123,408,43,1,1,85,1371,6410,11346,6410,1371,85,1,1, %U A333758 171,4599,37165,113748,113748,37165,4599,171,1 %N A333758 Square array T(n,k), n >= 2, k >= 2, read by antidiagonals, where T(n,k) is the number of self-avoiding closed paths in the n X k grid graph which pass through all vertices on four (left, right, upper, lower) sides of the graph. %F A333758 T(n,k) = T(k,n). %e A333758 T(4,3) = 3; %e A333758 +--+--+ +--+--+ +--+--+ %e A333758 | | | | | | %e A333758 +--* + + *--+ + + %e A333758 | | | | | | %e A333758 +--* + + *--+ + + %e A333758 | | | | | | %e A333758 +--+--+ +--+--+ +--+--+ %e A333758 Square array T(n,k) begins: %e A333758 1, 1, 1, 1, 1, 1, 1, ... %e A333758 1, 1, 3, 5, 11, 21, 43, ... %e A333758 1, 3, 11, 36, 122, 408, 1371, ... %e A333758 1, 5, 36, 191, 1123, 6410, 37165, ... %e A333758 1, 11, 122, 1123, 11346, 113748, 1153742, ... %e A333758 1, 21, 408, 6410, 113748, 2002405, 35669433, ... %o A333758 (Python) %o A333758 # Using graphillion %o A333758 from graphillion import GraphSet %o A333758 import graphillion.tutorial as tl %o A333758 def A333758(n, k): %o A333758 universe = tl.grid(n - 1, k - 1) %o A333758 GraphSet.set_universe(universe) %o A333758 cycles = GraphSet.cycles() %o A333758 points = [i for i in range(1, k * n + 1) if i % k < 2 or ((i - 1) // k + 1) % n < 2] %o A333758 for i in points: %o A333758 cycles = cycles.including(i) %o A333758 return cycles.len() %o A333758 print([A333758(j + 2, i - j + 2) for i in range(11 - 1) for j in range(i + 1)]) %Y A333758 Rows n=2..7 give: A000012, A001045(n-1), A333760, A358696, A358697, A358698. %Y A333758 Main diagonal gives A333759. %Y A333758 Cf. A333513. %K A333758 nonn,tabl %O A333758 2,8 %A A333758 _Seiichi Manyama_, Apr 04 2020