This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333769 #8 May 28 2020 05:01:19 %S A333769 1,1,2,1,1,1,1,1,3,1,1,1,2,1,2,1,1,1,1,1,2,1,4,1,1,1,1,1,1,2,1,1,2,1, %T A333769 1,1,1,1,3,1,1,1,1,1,1,2,1,1,2,2,1,2,1,1,3,1,5,1,1,1,1,1,1,2,2,1,1,1, %U A333769 1,1,1,1,3,1,1,1,1,1,3,2,2,1,1,1,1,1,1 %N A333769 Irregular triangle read by rows where row k is the sequence of run-lengths of the k-th composition in standard order. %C A333769 A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %e A333769 The standard compositions and their run-lengths: %e A333769 0: () -> () %e A333769 1: (1) -> (1) %e A333769 2: (2) -> (1) %e A333769 3: (1,1) -> (2) %e A333769 4: (3) -> (1) %e A333769 5: (2,1) -> (1,1) %e A333769 6: (1,2) -> (1,1) %e A333769 7: (1,1,1) -> (3) %e A333769 8: (4) -> (1) %e A333769 9: (3,1) -> (1,1) %e A333769 10: (2,2) -> (2) %e A333769 11: (2,1,1) -> (1,2) %e A333769 12: (1,3) -> (1,1) %e A333769 13: (1,2,1) -> (1,1,1) %e A333769 14: (1,1,2) -> (2,1) %e A333769 15: (1,1,1,1) -> (4) %e A333769 16: (5) -> (1) %e A333769 17: (4,1) -> (1,1) %e A333769 18: (3,2) -> (1,1) %e A333769 19: (3,1,1) -> (1,2) %e A333769 For example, the 119th composition is (1,1,2,1,1,1), so row 119 is (2,1,3). %t A333769 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A333769 Table[Length/@Split[stc[n]],{n,0,30}] %Y A333769 Row sums are A000120. %Y A333769 Row lengths are A124767. %Y A333769 Row k is the A333627(k)-th standard composition. %Y A333769 A triangle counting compositions by runs-resistance is A329744. %Y A333769 All of the following pertain to compositions in standard order (A066099): %Y A333769 - Partial sums from the right are A048793. %Y A333769 - Sum is A070939. %Y A333769 - Adjacent equal pairs are counted by A124762. %Y A333769 - Strict compositions are A233564. %Y A333769 - Partial sums from the left are A272020. %Y A333769 - Constant compositions are A272919. %Y A333769 - Normal compositions are A333217. %Y A333769 - Heinz number is A333219. %Y A333769 - Runs-resistance is A333628. %Y A333769 - First appearances of run-resistances are A333629. %Y A333769 - Combinatory separations are A334030. %Y A333769 Cf. A029931, A098504, A114994, A181819, A182850, A225620, A228351, A238279, A242882, A318928, A329747, A333489, A333630. %K A333769 nonn,tabf %O A333769 0,3 %A A333769 _Gus Wiseman_, Apr 10 2020