This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333776 #10 Apr 07 2020 12:19:52 %S A333776 0,1,2,3,4,6,5,7,8,12,10,14,9,11,13,15,16,24,20,28,18,22,26,30,17,19, %T A333776 21,23,25,29,27,31,32,48,40,56,36,44,52,60,34,38,42,46,50,58,54,62,33, %U A333776 35,37,39,41,45,43,47,49,57,53,61,51,55,59,63,64,96,80 %N A333776 Scan the binary representation of n from right to left; at each 1, reverse the bits to the right and excluding this 1. The resulting binary representation is that of a(n). %C A333776 This sequence is a permutation of the nonnegative integers (as it is injective and preserves the binary length); see A333777 for the inverse. %C A333776 We can devise a variant of this sequence for any fixed base b > 1, by performing a reversal at each nonzero digit in base b. %H A333776 Rémy Sigrist, <a href="/A333776/b333776.txt">Table of n, a(n) for n = 0..8192</a> %H A333776 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A333776 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A333776 a(2*n) <= 2*a(n) with equality iff n = 0 or n is a power of 2. %F A333776 A000120(a(n)) = A000120(n). %e A333776 For n = 90: %e A333776 - the binary representation of 90 is "1011010", %e A333776 - this binary representation evolves as follows (parentheses indicate reversals): %e A333776 1 0 1 1 0 1(0) %e A333776 1 0 1 1(0 1 0) %e A333776 1 0 1(0 1 0 1) %e A333776 1(1 0 1 0 1 0) %e A333776 - the resulting binary representation is "1101010" %e A333776 - and a(90) = 106. %e A333776 The binary plot of the first terms is as follows (#'s denote 1's): %e A333776 ################################ %e A333776 ################ # # ## #### ######## %e A333776 ######## # # ## #### ## # # ## # # #### # # ## %e A333776 #### # # ## ## # # ## # # #### # # ## ## # # ## # # %e A333776 ## # # ## # # #### # # ## ######## # # ## #### %e A333776 # # ## #### ######## ################ %e A333776 1 2 3 4 5 6 %e A333776 0123456789012345678901234567890123456789012345678901234567890123 %o A333776 (PARI) a(n, base=2) = { my (d=digits(n, base), t=[]); forstep (k=#d, 1, -1, if (d[k], t=Vecrev(t)); t=concat(d[k], t)); fromdigits(t, base); } %Y A333776 See A333692 for a similar sequence. %Y A333776 Cf. A000120, A330081, A333777 (inverse), A333778 (fixed points). %K A333776 nonn,base %O A333776 0,3 %A A333776 _Rémy Sigrist_, Apr 05 2020