This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333794 #27 Oct 05 2021 21:07:15 %S A333794 1,3,6,7,12,13,20,15,22,25,36,27,40,41,42,31,48,45,64,51,66,73,96,55, %T A333794 76,81,72,83,112,85,116,63,118,97,120,91,128,129,130,103,144,133,176, %U A333794 147,136,193,240,111,182,153,162,163,216,145,208,167,202,225,284,171,232,233,208,127,236,237,304,195,306,241,312,183,256,257 %N A333794 a(1) = 1, for n > 1, a(n) = n + a(n-A052126(n)). %C A333794 Conjecturally, also the largest path sum when iterating from n to 1 with nondeterministic map k -> k - k/p, where p is any prime factor of k. %H A333794 Antti Karttunen, <a href="/A333794/b333794.txt">Table of n, a(n) for n = 1..16384</a> %H A333794 Antti Karttunen, <a href="/A333794/a333794.txt">Data supplement: n, a(n) computed for n = 1..65537</a> %H A333794 Michael De Vlieger, <a href="/A333794/a333794.png">Graph montage</a> of k -> k - k/p, with prime p|k for 2 <= k <= 211, red line showing path of greatest sum, blue the path of least sum (cf. A333790), and purple where the two paths coincide, with other paths in gray. %F A333794 a(1) = 1; and for n > 1, a(n) = n + a(A171462(n)) = n + a(n-A052126(n)). %F A333794 a(n) = A073934(n) + A333793(n). %F A333794 a(n) = n + Max a(n - n/p), for p prime and dividing n. [Conjectured, holds at least up to n=2^24] %F A333794 For all n >= 1, A333790(n) <= a(n) <= A332904(n). %F A333794 For all n >= 1, a(n) >= A332993(n). [Apparently, have to check!] %e A333794 For n=119, the graph obtained is this: %e A333794 119 %e A333794 _/\_ %e A333794 / \ %e A333794 102 112 %e A333794 _/|\_ | \_ %e A333794 _/ | \_ | \_ %e A333794 / | \ | \ %e A333794 51 68 96 56 %e A333794 /| _/ | _/| _/ | %e A333794 / | _/ | _/ | _/ | %e A333794 / |/ |/ |/ | %e A333794 (48) 34 64 48 28 %e A333794 |\_ | _/| _/| %e A333794 | \_ | _/ | _/ | %e A333794 | \_|_/ |/ | %e A333794 17 32 24 14 %e A333794 \_ | _/| _/| %e A333794 \_ | _/ | _/ | %e A333794 \_|_/ |/ | %e A333794 16 12 7 %e A333794 | _/| _/ %e A333794 | _/ | _/ %e A333794 |_/ |_/ %e A333794 8 _6 %e A333794 | __/ | %e A333794 |_/ | %e A333794 4 3 %e A333794 \ / %e A333794 \_ _/ %e A333794 2 %e A333794 | %e A333794 1. %e A333794 If we always subtract A052126(n) (i.e., n divided by its largest prime divisor), i.e., iterate with A171462 (starting from 119), we obtain 119-(119/17) = 112 -> 112-(112/7) -> 96-(96/3) -> 64-(64/2) -> 32-(32/2) -> 16-(16/2) -> 8-(8/2) -> 4-(4/2) -> 2-(2/2) -> 1, with sum 119+112+96+64+32+16+8+4+2+1 = 554, thus a(119) = 554. This happens also to be maximal sum of any path in above diagram. %t A333794 Array[Total@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, #, # > 1 &] &, 74] (* _Michael De Vlieger_, Apr 14 2020 *) %o A333794 (PARI) A333794(n) = if(1==n,n,n + A333794(n-(n/vecmax(factor(n)[, 1])))); %Y A333794 Cf. A052126, A073934, A171462, A332994, A333790, A333793. %K A333794 nonn %O A333794 1,2 %A A333794 _Antti Karttunen_, Apr 05 2020