cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333796 Number of self-avoiding closed paths on an n X n grid which pass through all points on the diagonal connecting NW and SE corners.

This page as a plain text file.
%I A333796 #16 Apr 07 2020 10:38:32
%S A333796 1,2,22,716,73346,23374544,23037365786,69630317879888
%N A333796 Number of self-avoiding closed paths on an n X n grid which pass through all points on the diagonal connecting NW and SE corners.
%C A333796 a(11) = 18267559028025887599256.
%e A333796 a(2) = 1;
%e A333796    +--*
%e A333796    |  |
%e A333796    *--+
%e A333796 a(3) = 2;
%e A333796    +--*--*   +--*
%e A333796    |     |   |  |
%e A333796    *--+  *   *  +--*
%e A333796       |  |   |     |
%e A333796       *--+   *--*--+
%e A333796 a(4) = 22;
%e A333796    +--*--*--*   +--*--*--*   +--*--*--*
%e A333796    |        |   |        |   |        |
%e A333796    *--+--*  *   *--+--*  *   *--+--*  *
%e A333796          |  |         |  |         |  |
%e A333796    *--*--+  *      *--+  *         +  *
%e A333796    |        |      |     |         |  |
%e A333796    *--*--*--+      *--*--+         *--+
%e A333796    +--*--*--*   +--*--*--*   +--*--*--*
%e A333796    |        |   |        |   |        |
%e A333796    *--+  *--*   *--+  *--*   *--+     *
%e A333796       |  |         |  |         |     |
%e A333796    *--*  +--*      *  +--*      *--+  *
%e A333796    |        |      |     |         |  |
%e A333796    *--*--*--+      *--*--+         *--+
%e A333796    +--*--*--*   +--*--*--*   +--*--*--*
%e A333796    |        |   |        |   |        |
%e A333796    *  +--*--*   *  +--*  *   *  +--*  *
%e A333796    |  |         |  |  |  |   |  |  |  |
%e A333796    *  *--+--*   *--*  +  *   *  *  +  *
%e A333796    |        |         |  |   |  |  |  |
%e A333796    *--*--*--+         *--+   *--*  *--+
%e A333796    +--*--*      +--*--*      +--*--*
%e A333796    |     |      |     |      |     |
%e A333796    *--+  *--*   *--+  *      *--+  *
%e A333796       |     |      |  |         |  |
%e A333796       *--+  *   *--*  +--*      *  +--*
%e A333796          |  |   |        |      |     |
%e A333796          *--+   *--*--*--+      *--*--+
%e A333796    +--*--*      +--*  *--*   +--*  *--*
%e A333796    |     |      |  |  |  |   |  |  |  |
%e A333796    *  +--*      *  +--*  *   *  +--*  *
%e A333796    |  |         |        |   |        |
%e A333796    *  *--+--*   *--*--+  *   *  *--+  *
%e A333796    |        |         |  |   |  |  |  |
%e A333796    *--*--*--+         *--+   *--*  *--+
%e A333796    +--*  *--*   +--*         +--*
%e A333796    |  |  |  |   |  |         |  |
%e A333796    *  +  *  *   *  +--*--*   *  +--*--*
%e A333796    |  |  |  |   |        |   |        |
%e A333796    *  *--+  *   *--*--+  *   *  *--+  *
%e A333796    |        |         |  |   |  |  |  |
%e A333796    *--*--*--+         *--+   *--*  *--+
%e A333796    +--*         +--*         +--*
%e A333796    |  |         |  |         |  |
%e A333796    *  +--*      *  +--*      *  +  *--*
%e A333796    |     |      |     |      |  |  |  |
%e A333796    *--*  +--*   *     +--*   *  *--+  *
%e A333796       |     |   |        |   |        |
%e A333796       *--*--+   *--*--*--+   *--*--*--+
%e A333796    +--*
%e A333796    |  |
%e A333796    *  +
%e A333796    |  |
%e A333796    *  *--+--*
%e A333796    |        |
%e A333796    *--*--*--+
%o A333796 (Python)
%o A333796 # Using graphillion
%o A333796 from graphillion import GraphSet
%o A333796 import graphillion.tutorial as tl
%o A333796 def A333796(n):
%o A333796     universe = tl.grid(n - 1, n - 1)
%o A333796     GraphSet.set_universe(universe)
%o A333796     cycles = GraphSet.cycles()
%o A333796     points = [i + 1 for i in range(n * n) if i % n - i // n == 0]
%o A333796     for i in points:
%o A333796         cycles = cycles.including(i)
%o A333796     return cycles.len()
%o A333796 print([A333796(n) for n in range(2, 10)])
%Y A333796 Cf. A333455, A333464, A333466, A333795.
%K A333796 nonn,more
%O A333796 2,2
%A A333796 _Seiichi Manyama_, Apr 05 2020