This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333814 #55 Apr 07 2020 21:47:07 %S A333814 48,84,156,192,228,264,336,372,408,444,480,516,552,624,660,732,804, %T A333814 840,912,1056,1092,1128,1164,1236,1272,1308,1344,1380,1416,1452,1524, %U A333814 1560,1632,1704,1740,1812,1920,2028,2064,2136,2172,2208,2244,2280,2316,2352,2424 %N A333814 Multiples of 12 whose sum of digits is 12. %C A333814 If m is a term, 10*m is also a term. %F A333814 a(n) ~ A235151(n). - _Charles R Greathouse IV_, Apr 07 2020 %e A333814 732 = 12 * 61 and 7 + 3 + 2 = 12, hence 732 is a term. %t A333814 Select[12 * Range[200], Plus @@ IntegerDigits[#] == 12 &] (* _Amiram Eldar_, Apr 06 2020 *) %o A333814 (PARI) is(n)=sumdigits(n)==12 && n%4==0 \\ _Charles R Greathouse IV_, Apr 07 2020 %Y A333814 Intersection of A235151 (sum of digits = 12) and A008594 (multiples of 12). %Y A333814 Multiples of k whose sum of digits = k: A011557 (k=1), A069537 (k=2), A052217 (k=3), A063997 (k=4), A069540 (k=5), A062768 (k=6), A063416 (k=7), A069543 (k=8), A052223 (k=9), A333834 (k=10), A283742 (k=11), this sequence (k=12), A283737 (k=13). %Y A333814 Cf. A008594 (multiples of 12), A235151 (sum of digits = 12). %Y A333814 Cf. A057147 (a(n) = n times sum of digits of n). %K A333814 nonn,base %O A333814 1,1 %A A333814 _Bernard Schott_, Apr 06 2020