This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333829 #49 Jan 05 2024 14:55:59 %S A333829 1,2,1,5,10,1,14,73,37,1,42,476,651,126,1,132,2952,8530,4770,422,1, %T A333829 429,17886,95943,114612,31851,1422,1,1430,107305,987261,2162033, %U A333829 1317133,202953,4853,1,4862,642070,9613054,35196634,39471355,13792438,1262800,16786,1 %N A333829 Triangle read by rows: T(n,k) is the number of parking functions of length n with k strict descents. T(n,k) for n >= 1 and 0 <= k <= n-1. %C A333829 In a parking function w(1), ..., w(n), a strict descent is an index i such that w(i) > w(i+1). %C A333829 Define an n-dimensional polytope as the convex hull of length n+1 nondecreasing parking functions. Then, the Ehrhart h*-polynomial of this polytope is Sum_{k=0..n-1} T(n,k) * z^(n-1-k). %H A333829 Ari Cruz, Pamela E. Harris, Kimberly J. Harry, Jan Kretschmann, Matt McClinton, Alex Moon, John O. Museus, and Eric Redmon, <a href="https://arxiv.org/abs/2312.16786">On some discrete statistics of parking functions</a>, arXiv:2312.16786 [math.CO], 2023. %H A333829 Paul R. F. Schumacher, <a href="https://www.emis.de/journals/JIS/VOL21/Schumacher/schu5.html">Descents in Parking Functions</a>, J. Int. Seq. 21 (2018), #18.2.3. %e A333829 The triangle T(n,k) begins: %e A333829 n/k 0 1 2 3 4 5 %e A333829 1 1 %e A333829 2 2 1 %e A333829 3 5 10 1 %e A333829 4 14 73 37 1 %e A333829 5 42 476 651 126 1 %e A333829 6 132 2952 8530 4770 422 1 %e A333829 ... %e A333829 The 10 parking functions of length 3 with 1 strict descent are: [[1, 2, 1], [2, 1, 1], [1, 3, 1], [3, 1, 1], [2, 1, 2], [2, 2, 1], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2]]. %o A333829 (SageMath) %o A333829 var('z,t') %o A333829 assume(0<z<1) %o A333829 # Returns a polynomial which is the generating function of strict descents in permutations of a multiset of integers. The multiplicity of these integers are given by an integer partition l. The function uses an analytic expression rather than enumerating the combinatorial objects. %o A333829 def des_multiset(l): %o A333829 return expand(factor(sum( mul( mul( t+i for i in range(1,k+1)) / factorial(k) for k in l ) * z**t , t , 0 , oo ) * (1-z)**(sum(l)+1) )) %o A333829 # Returns the numbers of noncrossing partitions of size n and type l (an integer partition of n), cf. Kreweras: "Sur les partitions non-croisées d'un cycle". %o A333829 def kreweras_numbers(l): %o A333829 m = l.to_exp() %o A333829 s = sum(l) %o A333829 return ZZ.prod(range(s - len(l) + 2, s + 1)) // ZZ.prod(factorial(i) for i in m) %o A333829 def Trow(n): %o A333829 pol = sum(des_multiset(l) * kreweras_numbers(l) for l in Partitions(n)) %o A333829 return pol.list() %o A333829 print([Trow(n) for n in (1..4)]) %o A333829 (SageMath) # using[latte_int from LattE] %o A333829 # Install with "sage -i latte_int". %o A333829 # Another method is to compute the Ehrhart h^*-polynomial of a polytope. %o A333829 var('z,t') %o A333829 def Tpol(n): %o A333829 p = Polyhedron( NonDecreasingParkingFunctions(n+1) ).ehrhart_polynomial() %o A333829 return expand(factor( (1-z)**(n+1) * sum( p * z**t , t , 0 , oo ) )) %o A333829 def T(n,k): %o A333829 return Tpol(n).list()[n-1-k] %Y A333829 Row sums give A000272(n+1). %Y A333829 Column k=0 gives A000108. %Y A333829 Similar to A108267. %K A333829 nonn,tabl,easy %O A333829 1,2 %A A333829 _Matthieu Josuat-Vergès_, Apr 06 2020