cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333848 a(n) gives the sum of the odd numbers of the smallest nonnegative reduced residue system modulo 2*n + 1, for n >= 0.

This page as a plain text file.
%I A333848 #26 Oct 15 2020 16:36:24
%S A333848 0,1,4,9,13,25,36,32,64,81,66,121,124,121,196,225,170,216,324,240,400,
%T A333848 441,272,529,513,416,676,560,522,841,900,570,792,1089,770,1225,1296,
%U A333848 752,1170,1521,1093,1681,1376,1232,1936,1656,1410,1728,2304,1490,2500
%N A333848 a(n) gives the sum of the odd numbers of the smallest nonnegative reduced residue system modulo 2*n + 1, for n >= 0.
%C A333848 The smallest nonnegative reduced residue system modulo N is the ordered set RRS(N) (written as a list) with integers k from {0, 1, ..., N-1} satisfying gcd(k, N) = 1, for N >= 1. See A038566 (with A038566(1) = 0).
%C A333848 If only odd members of RRS(N) are considered, name this list RRSodd(N), e.g., RRSodd(1) = [], the empty list, RRSodd(2) = [1], etc. See A216319 (but there A216319(1) = 1). The number of elements of RRSodd(N) is delta(N) = A055034(N), for N >= 2, and 0 for N = 1.
%C A333848 Here only numbers N = 2*n + 1 >= 1 are considered, and for the empty list RRSodd(1) a(0) is set to 0.
%C A333848 a(n) gives for n >= 1 also the sum of the numbers of the primitive period of the unsigned Schick sequences SBB(2*n+1, q0 = 1) (BB for Brändli and Beyne), for which 2*n + 1 satisfies A135303(n) = 1 (in Schick's notation B(2*n+1) = 1, implying initial value q0 = 1). The numbers n satisfying A135303(n) = 1 are given in A333854.
%C A333848 The sequence with members gcd(a(n), 2*(2*n+1)) = A333849(n) is important for a length formula for the Euler tours ET(2*n+1, q0 = 1) given in A332441(n), for n >= 1 (but A333849(n) is used only for 2*n+1 values from A333854).
%D A333848 Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6). Tables 3.1 to 3.10, for odd p = 3..113 (with gaps), pp. 158-166.
%H A333848 Michael De Vlieger, <a href="/A333848/b333848.txt">Table of n, a(n) for n = 0..10000</a>
%H A333848 Gerold Brändli and Tim Beyne, <a href="https://arxiv.org/abs/1504.02757">Modified Congruence Modulo n with Half the Amount of Residues</a>, arXiv:1504.02757 [math.NT], 2016.
%H A333848 Wolfdieter Lang, <a href="https://arxiv.org/abs/2008.04300">On the Equivalence of Three Complete Cyclic Systems of Integers</a>, arXiv:2008.04300 [math.NT], 2020.
%F A333848 a(n) = Sum_{j=1..delta(2*n+1)} RRSodd(2*n+1)_j, for n >= 1, with delta(k) = A055034(k). a(0) = 0 (undefined case).
%e A333848 n = 4: RRSodd(9) = {1, 5, 7} with sum a(4) = 13. Schick's unsigned cycle is SBB(9, 1) = (1, 7, 5). Because A135303(4) = B(9) = 1 there is only this cycle for n = 9.
%t A333848 {0}~Join~Table[Total@ Select[Range[1, m, 2], GCD[#, m] == 1 &], {m, Array[2 # + 1 &, 50]}] (* _Michael De Vlieger_, Oct 15 2020 *)
%o A333848 (PARI) a(n) = if (n==0, 0, my(m=2*n+1); vecsum(select(x->((gcd(m, x)==1) && (x%2)), [1..m]))); \\ _Michel Marcus_, May 05 2020
%o A333848 (PARI) apply( {A333848(n)=vecsum([2*m-1|m<-[1..n],gcd(m*2-1,n*2+1)==1])}, [0..50]) \\ _M. F. Hasler_, Jun 04 2020
%Y A333848 Cf. A038566, A055034, A135303, A216319, A333849, A333854.
%K A333848 nonn,easy
%O A333848 0,3
%A A333848 _Wolfdieter Lang_, May 01 2020