A333853 The values >= 2 of A135303 for the odd numbers A333855(n), for n >= 1.
2, 3, 2, 2, 3, 2, 2, 3, 4, 4, 4, 4, 3, 3, 2, 2, 2, 3, 4, 3, 2, 2, 9, 6, 3, 2, 4, 5, 2, 3, 3, 2, 2, 6, 2, 4, 2, 3, 2, 4, 2, 8, 2, 3, 6, 4, 4, 3, 3, 2, 4, 10, 3, 2, 5, 8, 16, 3, 4, 4, 6, 5, 3, 3, 4, 3, 2, 2, 2, 2
Offset: 1
Keywords
Examples
n = 23: A333855(23) = 127 with A135303((127-1)/2) = A135303(63) = 9 = a(23). There are 9 Schick cycles (see also A333850), also 9 coaches, and also 9 modified doubling sequences.
References
- Peter Hilton and Jean Pedersen, A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, 2010, pp. 261-264.
- Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6). Tables 3.1 to 3.10, for odd p = 3..113 (with gaps), pp. 158-166.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020.
Programs
-
Mathematica
Map[EulerPhi[#2]/(2 If[#2 > 1 && GCD[#1, #2] == 1, Min[MultiplicativeOrder[#1, #2, {-1, 1}]], 0]) & @@ {2, #} &, 1 + 2 Select[Range[2, 15000], 2 <= EulerPhi[#2]/(2 If[#2 > 1 && GCD[#1, #2] == 1, Min[MultiplicativeOrder[#1, #2, {-1, 1}]], 0]) & @@ {2, 2 # + 1} &]] (* Michael De Vlieger, Oct 15 2020 *)
Comments