This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333865 #20 Feb 16 2025 08:33:59 %S A333865 0,1,2,4,8,18,40,100,256,705,2057,6370,20803,71725,259678,985244, %T A333865 3905022,16124936,69188809,307765510,1416146859,6727549181, %U A333865 32938379216,165942445714,859020421012,4563322971706,24847598243116,138533012486423,790075521708603,4605183081182354 %N A333865 Number of simple graphs on n nodes with vertex count > edge count + 1. %C A333865 These graphs correspond to "trivially ungraceful" graphs that do not have enough integers less than or equal to the edge count to cover all the vertices. %H A333865 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GracefulGraph.html">Graceful Graph</a> %H A333865 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SimpleGraph.html">Simple Graph</a> %H A333865 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UngracefulGraph.html">Ungraceful Graph</a> %F A333865 a(n) <= A308556(n). %F A333865 a(n) = Sum_{k=0..n-2} A008406(n, k). - _Andrew Howroyd_, Apr 08 2020 %t A333865 Get["Combinatorica`"] // Quiet; %t A333865 Table[Total[Take[CoefficientList[GraphPolynomial[n, x], x], n - 1]], {n, 20}] %o A333865 (PARI) %o A333865 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A333865 edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))} %o A333865 a(n)={my(s=0); if(n>1, forpart(p=n, s+=permcount(p)*polcoef(edges(p, i->1 + x^i + O(x^(n-1)))/(1-x), n-2) )); s/n!} \\ _Andrew Howroyd_, Apr 08 2020 %Y A333865 Cf. A008406. %Y A333865 Cf. A308556 (number of simple ungraceful graphs on n nodes). %K A333865 nonn %O A333865 1,3 %A A333865 _Eric W. Weisstein_, Apr 08 2020 %E A333865 Terms a(11) and beyond from _Andrew Howroyd_, Apr 08 2020