This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333872 #10 Apr 09 2020 05:23:59 %S A333872 1,2,3,5,7,11,17,19,23,31,41,43,47,59,71,79,83,103,107,131,139,167, %T A333872 223,227,263,347,359,383,467,479,563,587,659,719,839,863,887,1019, %U A333872 1163,1187,1223,1259,1283,1307,1319,1367,1439,1823,1979,2027,2039,2207,2447,2879 %N A333872 Numbers at which the sum of the iterated absolute Möbius divisor function (A173557) attains a record. %C A333872 Analogous to A181659 with the absolute Möbius divisor function (A173557) instead of the Euler totient function phi (A000010). %C A333872 The corresponding record values are 0, 1, 3, 5, 9, 15, 17, 21, 37, 39, 45, ... (see the link for more values). %H A333872 Amiram Eldar, <a href="/A333872/b333872.txt">Table of n, a(n) for n = 1..1697</a> (terms below 10^10) %H A333872 Amiram Eldar, <a href="/A333872/a333872.txt">Table of n, a(n), A333871(a(n)) for n = 1..1697</a> %H A333872 Daeyeoul Kim, Umit Sarp, and Sebahattin Ikikardes, <a href="https://doi.org/10.3390/math7111083">Iterating the Sum of Möbius Divisor Function and Euler Totient Function</a>, Mathematics, Vol. 7, No. 11 (2019), pp. 1083-1094. %t A333872 f[p_, e_] := p - 1; u[1] = 1; u[n_] := Times @@ (f @@@ FactorInteger[n]); s[n_] := Plus @@ FixedPointList[u, n] - n - 1; seq = {}; smax = -1; Do[s1 = s[n]; If[s1 > smax, smax = s1; AppendTo[seq, n]], {n, 1, 3000}]; seq %Y A333872 Cf. A173557, A181659, A330400, A331407, A333612, A333871. %K A333872 nonn %O A333872 1,2 %A A333872 _Amiram Eldar_, Apr 08 2020