cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333872 Numbers at which the sum of the iterated absolute Möbius divisor function (A173557) attains a record.

This page as a plain text file.
%I A333872 #10 Apr 09 2020 05:23:59
%S A333872 1,2,3,5,7,11,17,19,23,31,41,43,47,59,71,79,83,103,107,131,139,167,
%T A333872 223,227,263,347,359,383,467,479,563,587,659,719,839,863,887,1019,
%U A333872 1163,1187,1223,1259,1283,1307,1319,1367,1439,1823,1979,2027,2039,2207,2447,2879
%N A333872 Numbers at which the sum of the iterated absolute Möbius divisor function (A173557) attains a record.
%C A333872 Analogous to A181659 with the absolute Möbius divisor function (A173557) instead of the Euler totient function phi (A000010).
%C A333872 The corresponding record values are 0, 1, 3, 5, 9, 15, 17, 21, 37, 39, 45, ... (see the link for more values).
%H A333872 Amiram Eldar, <a href="/A333872/b333872.txt">Table of n, a(n) for n = 1..1697</a> (terms below 10^10)
%H A333872 Amiram Eldar, <a href="/A333872/a333872.txt">Table of n, a(n), A333871(a(n)) for n = 1..1697</a>
%H A333872 Daeyeoul Kim, Umit Sarp, and Sebahattin Ikikardes, <a href="https://doi.org/10.3390/math7111083">Iterating the Sum of Möbius Divisor Function and Euler Totient Function</a>, Mathematics, Vol. 7, No. 11 (2019), pp. 1083-1094.
%t A333872 f[p_, e_] := p - 1; u[1] = 1; u[n_] := Times @@ (f @@@ FactorInteger[n]); s[n_] := Plus @@ FixedPointList[u, n] - n - 1; seq = {}; smax = -1; Do[s1 = s[n];  If[s1 > smax, smax = s1; AppendTo[seq, n]], {n, 1, 3000}]; seq
%Y A333872 Cf. A173557, A181659, A330400, A331407, A333612, A333871.
%K A333872 nonn
%O A333872 1,2
%A A333872 _Amiram Eldar_, Apr 08 2020