This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333875 #11 Apr 09 2020 05:24:42 %S A333875 1,194,3705,5186,25545,388245,1659585,2200694,2521694,2619705,3289934, %T A333875 3794834,4002405,5781434,6245546,6372794,8338394,12352934,14144954, %U A333875 16475414,22632285,23553705,37762394,40588485,43834754,44485454,59603954,63298785,76466985,81591194 %N A333875 Numbers k such that both k and k+1 are squarefree and phi(k) = phi(k+1), where phi is the Euler totient function (A000010). %C A333875 Numbers k such that A000010(k) = A000010(k+1) = A173557(k) = A173557(k+1). %H A333875 Amiram Eldar, <a href="/A333875/b333875.txt">Table of n, a(n) for n = 1..1166</a> (terms below 10^13, calculated from the b-file at A001274) %H A333875 Daeyeoul Kim, Umit Sarp, and Sebahattin Ikikardes, <a href="http://dx.doi.org/10.18514/MMN.2019.2470">Certain combinatoric convolution sums arising from Bernoulli and Euler Polynomials</a>, Miskolc Mathematical Notes, No. 20, Vol. 1 (2019): pp. 311-330. %e A333875 1 is a term since 1 and 2 are both squarefree and phi(1) = phi(2) = 1. %t A333875 s = {}; p1 = 1; Do[p2 = If[SquareFreeQ[n], EulerPhi[n], 0]; If[p2 > 0 && p2 == p1, AppendTo[s, n-1]]; p1 = p2, {n, 2, 10^5}]; s %o A333875 (PARI) for(k=1,10^7, if(issquarefree(k), if(issquarefree(k+1), if(eulerphi(k)==eulerphi(k+1),print1(k,", "))))) \\ _Hugo Pfoertner_, Apr 08 2020 %Y A333875 Subsequence of A001274. %Y A333875 Cf. A000010, A173557, A333874. %K A333875 nonn %O A333875 1,2 %A A333875 _Amiram Eldar_, Apr 08 2020