This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333876 #17 Apr 11 2020 15:32:07 %S A333876 2,5,13,17,41,97,193,257,769,1153,2113,4129,12289,18433,40961,65537, %T A333876 163841,270337,786433,1179649,2101249,4194433,8650753,16777729, %U A333876 50332673,69206017,167772161,270532609,537133057,1107296257,3221225473,6442713089,8858370049 %N A333876 a(n) is the largest prime 2^(n-1) <= p < 2^n minimizing the Hamming weight of all primes in this interval. %H A333876 Chai Wah Wu, <a href="/A333876/b333876.txt">Table of n, a(n) for n = 2..1000</a> %o A333876 (PARI) for(n=2, 10, my(hmin=n+n,pmax); forprime(p=2^(n-1), 2^n, my(h=hammingweight(p)); if(h<=hmin,pmax=p;hmin=h)); print1(pmax,", ")) %o A333876 (Python) %o A333876 from sympy import isprime %o A333876 from sympy.utilities.iterables import multiset_permutations %o A333876 def A333876(n): %o A333876 for i in range(n): %o A333876 q = 2**n-1 %o A333876 for d in multiset_permutations('0'*i+'1'*(n-1-i)): %o A333876 p = q-int(''.join(d),2) %o A333876 if isprime(p): %o A333876 return p # _Chai Wah Wu_, Apr 08 2020 %Y A333876 Cf. A066195, A091936, A333877, A333878. %K A333876 nonn %O A333876 2,1 %A A333876 _Hugo Pfoertner_, Apr 08 2020