This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333877 #27 Aug 17 2024 11:13:43 %S A333877 3,7,13,31,61,127,251,509,1021,2039,4093,8191,16381,32749,65519, %T A333877 131071,262139,524287,1048573,2097143,4194301,8388587,16777213, %U A333877 33546239,67108859,134217467,260046847,536870909,1073741567,2147483647,4294967291,8589934583,16911433727 %N A333877 a(n) is the largest prime 2^(n-1) <= p < 2^n maximizing the Hamming weight of all primes in this interval. %C A333877 This differs from A014234 at n=1 and then first at n=16: a(16) = 65519 != 65521 = A014234(16). - _Alois P. Heinz_, Apr 25 2020 %H A333877 Chai Wah Wu, <a href="/A333877/b333877.txt">Table of n, a(n) for n = 2..998</a> %p A333877 a:= proc(n) option remember; local i, p; %p A333877 for i from 0 do p:= max(select(isprime, map(l-> add(l[j]* %p A333877 2^(j-1), j=1..n), combinat[permute]([1$(n-i),0$i])))); %p A333877 if p>0 then break fi %p A333877 od; p %p A333877 end: %p A333877 seq(a(n), n=2..30); # _Alois P. Heinz_, Apr 23 2020 %t A333877 a[n_] := a[n] = MaximalBy[{#, DigitCount[#, 2, 1]}& /@ Select[Range[ 2^(n-1), 2^n-1], PrimeQ], Last][[-1, 1]]; %t A333877 Table[Print[n, " ", a[n]]; a[n], {n, 2, 30}] (* _Jean-François Alcover_, Nov 09 2020 *) %o A333877 (PARI) for(n=2, 30, my(hmax=0,pmax); forprime(p=2^(n-1), 2^n, my(h=hammingweight(p)); if(h>=hmax,pmax=p;hmax=h)); print1(pmax,", ")) %o A333877 (Python) %o A333877 from sympy import isprime %o A333877 from sympy.utilities.iterables import multiset_permutations %o A333877 def A333877(n): %o A333877 for i in range(n-1,-1,-1): %o A333877 q = 2**n-1 %o A333877 for d in multiset_permutations('0'*i+'1'*(n-1-i)): %o A333877 p = q-int(''.join(d),2) %o A333877 if isprime(p): %o A333877 return p # _Chai Wah Wu_, Apr 08 2020 %Y A333877 Cf. A014234, A091937, A091938, A333876, A333879. %K A333877 nonn %O A333877 2,1 %A A333877 _Hugo Pfoertner_, Apr 08 2020