This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333883 #11 Sep 22 2023 12:42:59 %S A333883 1,1,1,1,1,1,1,2,9,37,121,331,793,1718,5163,32281,217921,1188709, %T A333883 5291353,20031170,66744741,267996541,2030569465,18368560519, %U A333883 138812739409,853152218102,4409607501927,19826125988257,99717123889777,871344991322017,9658479225877057 %N A333883 Expansion of e.g.f. exp(Sum_{k>=0} x^(6*k + 1) / (6*k + 1)!). %C A333883 Number of partitions of n-set into blocks congruent to 1 mod 6. %F A333883 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/6)} binomial(n-1,6*k) * a(n-6*k-1). - _Seiichi Manyama_, Sep 22 2023 %t A333883 nmax = 30; CoefficientList[Series[Exp[Sum[x^(6 k + 1)/(6 k + 1)!, {k, 0, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! %t A333883 a[n_] := a[n] = Sum[Boole[MemberQ[{1}, Mod[k, 6]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 30}] %t A333883 nmax = 30; CoefficientList[Series[Exp[x*HypergeometricPFQ[{}, {1/3, 1/2, 2/3, 5/6, 7/6}, x^6/46656]], {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Apr 15 2020 *) %Y A333883 Cf. A000110, A003724, A306347, A333881, A333882. %K A333883 nonn %O A333883 0,8 %A A333883 _Ilya Gutkovskiy_, Apr 08 2020