This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333901 #11 Apr 21 2020 19:28:43 %S A333901 1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,7,7,1,1,1,1,19,55,19,1,1,1,1,51, %T A333901 415,415,51,1,1,1,1,141,3391,10147,3391,141,1,1,1,1,393,28681,261331, %U A333901 261331,28681,393,1,1,1,1,1107,248137,7100821,22069251,7100821,248137,1107,1,1 %N A333901 Array read by antidiagonals: T(n,k) is the number of n X k nonnegative integer matrices with all column sums n and row sums k. %C A333901 T(n,k) is the number of ordered factorizations of m^n into n factors, where m is a product of exactly k distinct primes and each factor is a product of k primes (counted with multiplicity). %H A333901 Andrew Howroyd, <a href="/A333901/b333901.txt">Table of n, a(n) for n = 0..405</a> (antidiagonals n=0..27) %F A333901 T(n,k) = T(k,n). %e A333901 Array begins: %e A333901 ======================================================= %e A333901 n\k | 0 1 2 3 4 5 6 %e A333901 ----+-------------------------------------------------- %e A333901 0 | 1 1 1 1 1 1 1 ... %e A333901 1 | 1 1 1 1 1 1 1 ... %e A333901 2 | 1 1 3 7 19 51 141 ... %e A333901 3 | 1 1 7 55 415 3391 28681 ... %e A333901 4 | 1 1 19 415 10147 261331 7100821 ... %e A333901 5 | 1 1 51 3391 261331 22069251 1985311701 ... %e A333901 6 | 1 1 141 28681 7100821 1985311701 602351808741 ... %e A333901 ... %e A333901 The T(3,2) = 7 matrices are: %e A333901 [1 1] [1 1] [1 1] [2 0] [2 0] [0 2] [0 2] %e A333901 [1 1] [2 0] [0 2] [1 1] [0 2] [1 1] [2 0] %e A333901 [1 1] [0 2] [2 0] [0 2] [1 1] [2 0] [1 1] %o A333901 (PARI) %o A333901 T(n, k)={ %o A333901 local(M=Map(Mat([k, 1]))); %o A333901 my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v))); %o A333901 my(recurse(h, p, q, v, e) = if(!p, if(!e, acc(q, v)), my(i=poldegree(p), t=pollead(p)); self()(n, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(j=1, min(t, e\m), self()(if(j==t, n, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e-j*m))))); %o A333901 for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n, src[i, 1], 0, src[i, 2], k))); vecsum(Mat(M)[, 2]) %o A333901 } %o A333901 for(n=0, 7, for(k=0, 7, print1(T(n,k), ", ")); print) %Y A333901 Columns k=0..9 are A000012, A000012, A002426, A172743, A172816, A172868, A172904, A172931, A172947, A172961. %Y A333901 Main diagonal is A110058. %Y A333901 Cf. A257462, A257493. %K A333901 nonn,tabl %O A333901 0,13 %A A333901 _Andrew Howroyd_, Apr 18 2020