cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333901 Array read by antidiagonals: T(n,k) is the number of n X k nonnegative integer matrices with all column sums n and row sums k.

This page as a plain text file.
%I A333901 #11 Apr 21 2020 19:28:43
%S A333901 1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,7,7,1,1,1,1,19,55,19,1,1,1,1,51,
%T A333901 415,415,51,1,1,1,1,141,3391,10147,3391,141,1,1,1,1,393,28681,261331,
%U A333901 261331,28681,393,1,1,1,1,1107,248137,7100821,22069251,7100821,248137,1107,1,1
%N A333901 Array read by antidiagonals: T(n,k) is the number of n X k nonnegative integer matrices with all column sums n and row sums k.
%C A333901 T(n,k) is the number of ordered factorizations of m^n into n factors, where m is a product of exactly k distinct primes and each factor is a product of k primes (counted with multiplicity).
%H A333901 Andrew Howroyd, <a href="/A333901/b333901.txt">Table of n, a(n) for n = 0..405</a> (antidiagonals n=0..27)
%F A333901 T(n,k) = T(k,n).
%e A333901 Array begins:
%e A333901 =======================================================
%e A333901 n\k | 0 1   2     3       4          5            6
%e A333901 ----+--------------------------------------------------
%e A333901   0 | 1 1   1     1       1          1            1 ...
%e A333901   1 | 1 1   1     1       1          1            1 ...
%e A333901   2 | 1 1   3     7      19         51          141 ...
%e A333901   3 | 1 1   7    55     415       3391        28681 ...
%e A333901   4 | 1 1  19   415   10147     261331      7100821 ...
%e A333901   5 | 1 1  51  3391  261331   22069251   1985311701 ...
%e A333901   6 | 1 1 141 28681 7100821 1985311701 602351808741 ...
%e A333901   ...
%e A333901 The T(3,2) = 7 matrices are:
%e A333901   [1 1]  [1 1]  [1 1]  [2 0]  [2 0]  [0 2]  [0 2]
%e A333901   [1 1]  [2 0]  [0 2]  [1 1]  [0 2]  [1 1]  [2 0]
%e A333901   [1 1]  [0 2]  [2 0]  [0 2]  [1 1]  [2 0]  [1 1]
%o A333901 (PARI)
%o A333901 T(n, k)={
%o A333901   local(M=Map(Mat([k, 1])));
%o A333901   my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
%o A333901   my(recurse(h, p, q, v, e) = if(!p, if(!e, acc(q, v)), my(i=poldegree(p), t=pollead(p)); self()(n, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(j=1, min(t, e\m), self()(if(j==t, n, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e-j*m)))));
%o A333901   for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n, src[i, 1], 0, src[i, 2], k))); vecsum(Mat(M)[, 2])
%o A333901 }
%o A333901 for(n=0, 7, for(k=0, 7, print1(T(n,k), ", ")); print)
%Y A333901 Columns k=0..9 are A000012, A000012, A002426, A172743, A172816, A172868, A172904, A172931, A172947, A172961.
%Y A333901 Main diagonal is A110058.
%Y A333901 Cf. A257462, A257493.
%K A333901 nonn,tabl
%O A333901 0,13
%A A333901 _Andrew Howroyd_, Apr 18 2020