This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333903 #29 Jun 29 2023 11:01:03 %S A333903 1,1,16,264,117852,43399371,443064195958,3575671586791915, %T A333903 831655228913958996424,147303585340262824414389642, %U A333903 774577888161337889995061257722609,3015734636186832309974653370241824509796,356606519352227259565296610082412177642016167446 %N A333903 Number of directed Hamiltonian paths in a 2*n X n grid starting at the upper left corner and finishing in the lower left corner. %H A333903 Ed Wynn, <a href="/A333903/b333903.txt">Table of n, a(n) for n = 1..18</a> %F A333903 a(n) = A271592(2*n,n). %e A333903 a(1) = 1; %e A333903 S %e A333903 | %e A333903 * %e A333903 | %e A333903 E %e A333903 a(2) = 1; %e A333903 S--* %e A333903 | %e A333903 *--* %e A333903 | %e A333903 *--* %e A333903 | %e A333903 E--* %e A333903 a(3) = 16; %e A333903 S--*--* S--*--* S--*--* S--*--* %e A333903 | | | | %e A333903 *--*--* *--*--* *--*--* *--*--* %e A333903 | | | | %e A333903 *--*--* *--*--* * *--* * *--* %e A333903 | | | | | | | | %e A333903 *--*--* *--* * *--* * * * * %e A333903 | | | | | | | | %e A333903 *--*--* * * * *--* * *--* * %e A333903 | | | | | | | | %e A333903 E--*--* E *--* E *--* E--*--* %e A333903 S--*--* S--*--* S--*--* S--*--* %e A333903 | | | | %e A333903 *--* * *--* * *--* * *--* * %e A333903 | | | | | | | | | | | | %e A333903 * *--* * *--* * * * * * * %e A333903 | | | | | | | | %e A333903 *--*--* * *--* * *--* * * * %e A333903 | | | | | | | | %e A333903 *--* * *--* * *--*--* * * * %e A333903 | | | | | | | | %e A333903 E *--* E--*--* E--*--* E *--* %e A333903 S *--* S *--* S *--* S *--* %e A333903 | | | | | | | | | | | | %e A333903 *--* * *--* * *--* * *--* * %e A333903 | | | | %e A333903 *--*--* *--*--* *--* * *--* * %e A333903 | | | | | | | | %e A333903 *--*--* * *--* * *--* * * * %e A333903 | | | | | | | | %e A333903 *--* * *--* * *--*--* * * * %e A333903 | | | | | | | | %e A333903 E *--* E--*--* E--*--* E *--* %e A333903 S *--* S *--* S *--* S *--* %e A333903 | | | | | | | | | | | | %e A333903 * * * * * * * * * * * * %e A333903 | | | | | | | | | | | | %e A333903 *--* * *--* * * * * * * * %e A333903 | | | | | | | | %e A333903 *--*--* *--* * *--* * * * * %e A333903 | | | | | | | | %e A333903 *--*--* * * * *--* * *--* * %e A333903 | | | | | | | | %e A333903 E--*--* E *--* E *--* E--*--* %o A333903 (Python) %o A333903 # Using graphillion %o A333903 from graphillion import GraphSet %o A333903 import graphillion.tutorial as tl %o A333903 def A333903(n): %o A333903 universe = tl.grid(n - 1, 2 * n - 1) %o A333903 GraphSet.set_universe(universe) %o A333903 start, goal = 1, 2 * n %o A333903 paths = GraphSet.paths(start, goal, is_hamilton=True) %o A333903 return paths.len() %o A333903 print([A333903(n) for n in range(1, 8)]) %Y A333903 Cf. A000532, A271592, A333604, A333606, A333863. %K A333903 nonn %O A333903 1,3 %A A333903 _Seiichi Manyama_, Apr 09 2020 %E A333903 a(9), a(11), a(13) from _Seiichi Manyama_ %E A333903 a(8), a(10), a(12), a(14)-a(18) from _Ed Wynn_, Jun 28 2023