A333910 Numbers k such that psi(k) is the sum of 2 squares, where psi is the Dedekind psi function (A001615).
1, 3, 7, 10, 17, 18, 19, 20, 21, 22, 27, 30, 31, 36, 40, 44, 45, 46, 50, 51, 55, 57, 58, 60, 66, 67, 70, 71, 72, 73, 79, 80, 88, 89, 92, 93, 94, 97, 99, 100, 103, 106, 115, 116, 118, 119, 120, 126, 127, 132, 133, 138, 140, 144, 145, 150, 154, 160, 162, 163, 165
Offset: 1
Keywords
Examples
1 is a term since psi(1) = 1 = 0^2 + 1^2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- William D. Banks, Florian Luca, Filip Saidak, and Igor E. Shparlinski, Values of arithmetical functions equal to a sum of two squares, Quarterly Journal of Mathematics, Vol. 56, No. 2 (2005), pp. 123-139, alternative link.
Programs
-
Mathematica
psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); Select[Range[200], SquaresR[2, psi[#]] > 0 &]
-
Python
from itertools import count, islice from collections import Counter from sympy import factorint def A333910_gen(): # generator of terms return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in sum((Counter(factorint(1+p))+Counter({p:e-1}) for p ,e in factorint(n).items()),start=Counter()).items()),count(1)) A333910_list = list(islice(A333910_gen(),30)) # Chai Wah Wu, Jun 27 2022
Formula
c1 * x/log(x)^(3/2) < N(x) < c2 * x/log(x)^(3/2), where N(x) is the number of terms <= x, and c1 and c2 are two positive constants (Banks et al., 2005).