A333911 Numbers k such that sigma(k) is the sum of 2 squares, where sigma is the sum of divisors function (A000203).
1, 3, 7, 9, 10, 17, 19, 21, 22, 27, 30, 31, 40, 46, 51, 52, 55, 57, 58, 63, 66, 67, 70, 71, 73, 79, 81, 88, 89, 90, 93, 94, 97, 103, 106, 115, 118, 119, 120, 127, 133, 138, 145, 153, 154, 156, 163, 165, 170, 171, 174, 179, 184, 189, 190, 193, 198, 199, 201, 202
Offset: 1
Keywords
Examples
1 is a term since sigma(1) = 1 = 0^2 + 1^2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- William D. Banks, Florian Luca, Filip Saidak, and Igor E. Shparlinski, Values of arithmetical functions equal to a sum of two squares, Quarterly Journal of Mathematics, Vol. 56, No. 2 (2005), pp. 123-139, alternative link.
Programs
-
Mathematica
Select[Range[200], SquaresR[2, DivisorSigma[1, #]] > 0 &]
-
Python
from itertools import count, islice from collections import Counter from sympy import factorint def A333911_gen(): # generator of terms return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in sum((Counter(factorint((p**(e+1)-1)//(p-1))) for p, e in factorint(n).items()),start=Counter()).items()),count(1)) A333911_list = list(islice(A333911_gen(),30)) # Chai Wah Wu, Jun 27 2022
Formula
c1 * x/log(x)^(3/2) < N(x) < c2 * x/log(x)^(3/2), where N(x) is the number of terms <= x, and c1 and c2 are two positive constants (Banks et al., 2005).