cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333925 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j=2..k+1} 1/(1 - x^j).

This page as a plain text file.
%I A333925 #8 Sep 06 2020 06:41:50
%S A333925 1,1,0,1,0,0,1,0,1,0,1,0,1,0,0,1,0,1,1,1,0,1,0,1,1,1,0,0,1,0,1,1,2,1,
%T A333925 1,0,1,0,1,1,2,1,2,0,0,1,0,1,1,2,2,3,1,1,0,1,0,1,1,2,2,3,2,2,0,0,1,0,
%U A333925 1,1,2,2,4,3,4,2,1,0,1,0,1,1,2,2,4,3,5,3,2,0,0,1,0,1,1,2,2,4,4,6,5,5,2,1,0
%N A333925 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j=2..k+1} 1/(1 - x^j).
%C A333925 A(n,k) is the number of partitions of n into parts 2, 3, ..., k and k + 1.
%H A333925 David A. Corneth, <a href="/A333925/b333925.txt">Table of n, a(n) for n = 0..10010</a> (first 141 rows antidiagonals flattened)
%H A333925 <a href="/index/Mo#Molien">Index entries for Molien series</a>
%F A333925 G.f. of column k: Product_{j=2..k+1} 1/(1 - x^j).
%e A333925 Square array begins:
%e A333925   1,  1,  1,  1,  1,  1,  ...
%e A333925   0,  0,  0,  0,  0,  0,  ...
%e A333925   0,  1,  1,  1,  1,  1,  ...
%e A333925   0,  0,  1,  1,  1,  1,  ...
%e A333925   0,  1,  1,  2,  2,  2,  ...
%e A333925   0,  0,  1,  1,  2,  2,  ...
%t A333925 Table[Function[k, SeriesCoefficient[Product[1/(1 - x^j), {j, 2, k + 1}], {x, 0, n}]][i - n], {i, 0, 13}, {n, 0, i}] // Flatten
%Y A333925 Columns k=0..12 give A000007, A059841, A103221, A266755, A008667, A037145, A001996, A266776, A266777, A266778, A266779, A266780, A266781.
%Y A333925 Main diagonal gives A002865.
%Y A333925 Cf. A008284, A058398.
%K A333925 nonn,tabl
%O A333925 0,33
%A A333925 _Ilya Gutkovskiy_, Apr 10 2020