This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333941 #14 Jan 19 2023 22:36:23 %S A333941 1,0,1,0,2,0,0,2,2,0,0,3,2,3,0,0,2,4,6,4,0,0,4,6,9,8,5,0,0,2,6,15,20, %T A333941 15,6,0,0,4,8,24,32,35,18,7,0,0,3,10,27,56,70,54,28,8,0,0,4,12,42,84, %U A333941 125,120,84,32,9,0,0,2,10,45,120,210,252,210,120,45,10,0 %N A333941 Triangle read by rows where T(n,k) is the number of compositions of n with rotational period k. %C A333941 A composition of n is a finite sequence of positive integers summing to n. %H A333941 Andrew Howroyd, <a href="/A333941/b333941.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %F A333941 T(n,k) = Sum_{m|n} Sum_{d|gcd(k,m)} mu(d)*binomial(m/d-1, k/d-1) for n > 0. - _Andrew Howroyd_, Jan 19 2023 %e A333941 Triangle begins: %e A333941 1 %e A333941 0 1 %e A333941 0 2 0 %e A333941 0 2 2 0 %e A333941 0 3 2 3 0 %e A333941 0 2 4 6 4 0 %e A333941 0 4 6 9 8 5 0 %e A333941 0 2 6 15 20 15 6 0 %e A333941 0 4 8 24 32 35 18 7 0 %e A333941 0 3 10 27 56 70 54 28 8 0 %e A333941 0 4 12 42 84 125 120 84 32 9 0 %e A333941 0 2 10 45 120 210 252 210 120 45 10 0 %e A333941 0 6 18 66 168 335 450 462 320 162 50 11 0 %e A333941 Row n = 6 counts the following compositions (empty columns indicated by dots): %e A333941 . (6) (15) (114) (1113) (11112) . %e A333941 (33) (24) (123) (1122) (11121) %e A333941 (222) (42) (132) (1131) (11211) %e A333941 (111111) (51) (141) (1221) (12111) %e A333941 (1212) (213) (1311) (21111) %e A333941 (2121) (231) (2112) %e A333941 (312) (2211) %e A333941 (321) (3111) %e A333941 (411) %t A333941 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Function[c,Length[Union[Array[RotateRight[c,#]&,Length[c]]]]==k]]],{n,0,10},{k,0,n}] %o A333941 (PARI) T(n,k)=if(n==0, k==0, sumdiv(n, m, sumdiv(gcd(k,m), d, moebius(d)*binomial(m/d-1, k/d-1)))) \\ _Andrew Howroyd_, Jan 19 2023 %Y A333941 Column k = 1 is A000005. %Y A333941 Row sums are A011782. %Y A333941 Diagonal T(2n,n) is A045630(n). %Y A333941 The strict version is A072574. %Y A333941 A version counting runs is A238279. %Y A333941 Column k = n - 1 is A254667. %Y A333941 Aperiodic compositions are counted by A000740. %Y A333941 Aperiodic binary words are counted by A027375. %Y A333941 The orderless period of prime indices is A052409. %Y A333941 Numbers whose binary expansion is periodic are A121016. %Y A333941 Periodic compositions are counted by A178472. %Y A333941 Period of binary expansion is A302291. %Y A333941 Numbers whose prime signature is aperiodic are A329139. %Y A333941 All of the following pertain to compositions in standard order (A066099): %Y A333941 - Length is A000120. %Y A333941 - Necklaces are A065609. %Y A333941 - Sum is A070939. %Y A333941 - Rotational symmetries are counted by A138904. %Y A333941 - Constant compositions are A272919. %Y A333941 - Lyndon compositions are A275692. %Y A333941 - Co-Lyndon compositions are A326774. %Y A333941 - Aperiodic compositions are A328594. %Y A333941 - Rotational period is A333632. %Y A333941 - Co-necklaces are A333764. %Y A333941 - Reversed necklaces are A333943. %Y A333941 Cf. A000031, A001037, A008965, A019536, A211100, A291166, A328595, A328596, A329312, A329313, A329326. %K A333941 nonn,tabl %O A333941 0,5 %A A333941 _Gus Wiseman_, Apr 16 2020