This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333942 #6 Apr 16 2020 18:48:48 %S A333942 1,1,2,2,3,4,4,5,5,7,9,11,7,11,11,15,7,12,16,21,16,26,26,36,12,21,26, %T A333942 36,21,36,36,52,11,19,29,38,31,52,52,74,29,52,66,92,52,92,92,135,19, %U A333942 38,52,74,52,92,92,135,38,74,92,135,74,135,135,203,15,30,47 %N A333942 Number of multiset partitions of a multiset whose multiplicities are the parts of the n-th composition in standard order. %C A333942 A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %F A333942 a(n) = A001055(A057335(n)). %e A333942 The a(1) = 1 through a(11) = 11 multiset partitions: %e A333942 {1} {11} {12} {111} {112} {122} {123} %e A333942 {1}{1} {1}{2} {1}{11} {1}{12} {1}{22} {1}{23} %e A333942 {1}{1}{1} {2}{11} {2}{12} {2}{13} %e A333942 {1}{1}{2} {1}{2}{2} {3}{12} %e A333942 {1}{2}{3} %e A333942 {1111} {1112} {1122} {1123} %e A333942 {1}{111} {1}{112} {1}{122} {1}{123} %e A333942 {11}{11} {11}{12} {11}{22} {11}{23} %e A333942 {1}{1}{11} {2}{111} {12}{12} {12}{13} %e A333942 {1}{1}{1}{1} {1}{1}{12} {2}{112} {2}{113} %e A333942 {1}{2}{11} {1}{1}{22} {3}{112} %e A333942 {1}{1}{1}{2} {1}{2}{12} {1}{1}{23} %e A333942 {2}{2}{11} {1}{2}{13} %e A333942 {1}{1}{2}{2} {1}{3}{12} %e A333942 {2}{3}{11} %e A333942 {1}{1}{2}{3} %t A333942 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A333942 ptnToNorm[y_]:=Join@@Table[ConstantArray[i,y[[i]]],{i,Length[y]}]; %t A333942 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A333942 Table[Length[facs[Times@@Prime/@ptnToNorm[stc[n]]]],{n,0,30}] %Y A333942 The described multiset has A000120 distinct parts. %Y A333942 The sum of the described multiset is A029931. %Y A333942 Multisets of compositions are A034691. %Y A333942 The described multiset is a row of A095684. %Y A333942 Combinatory separations of normal multisets are A269134. %Y A333942 The product of the described multiset is A284001. %Y A333942 The version for prime indices is A318284. %Y A333942 The version counting combinatory separations is A334030. %Y A333942 All of the following pertain to compositions in standard order (A066099): %Y A333942 - Length is A000120. %Y A333942 - Sum is A070939. %Y A333942 - Strict compositions are A233564. %Y A333942 - Constant compositions are A272919. %Y A333942 - Length of Lyndon factorization is A329312. %Y A333942 - Dealings are counted by A333939. %Y A333942 - Distinct parts are counted by A334028. %Y A333942 - Length of co-Lyndon factorization is A334029. %Y A333942 Cf. A057335, A065609, A275692, A292884, A318560, A318563, A326774, A333764, A333765, A333940. %K A333942 nonn %O A333942 0,3 %A A333942 _Gus Wiseman_, Apr 16 2020