cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A333951 Numbers k such that both k and k+1 are recursive abundant numbers (A333928).

Original entry on oeis.org

56924, 82004, 84524, 109395, 158235, 241604, 261260, 266475, 285075, 361844, 442035, 445004, 469755, 611324, 666315, 694484, 712844, 922635, 968715, 971684, 1102724, 1172115, 1190475, 1199835, 1239524, 1304324, 1338435, 1430715, 1442924, 1486275, 1523115, 1550835
Offset: 1

Views

Author

Amiram Eldar, Apr 11 2020

Keywords

Examples

			56924 is a term since A333926(56924) = 120960 > 2 * 56924, and A333926(56925) = 116064 > 2 * 56925.
		

Crossrefs

Subsequence of A333928.
Analogous sequences: A096399, A283418 (primitive), A318167 (bi-unitary), A327635 (infinitary), A327942 (nonunitary), A331412 (unitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); recAbQ[n_] := recDivSum[n] > 2*n; Select[Range[2*10^5], recAbQ[#] && recAbQ[# + 1] &]

A339936 Odd coreful abundant numbers: the odd terms of A308053.

Original entry on oeis.org

99225, 165375, 231525, 297675, 496125, 694575, 826875, 893025, 1091475, 1157625, 1225125, 1289925, 1488375, 1620675, 1686825, 1819125, 1885275, 2083725, 2149875, 2282175, 2480625, 2546775, 2679075, 2811375, 2877525, 3009825, 3075975, 3142125, 3274425, 3472875
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2020

Keywords

Comments

The asymptotic density of this sequence is Sum_{n>=1} f(A356871(n)) = 9.1348...*10^(-6), where f(n) = (4/(Pi^2*n))*Product_{prime p|n}(p/(p+1)) if n is odd and 0 otherwise. - Amiram Eldar, Sep 02 2022

Examples

			99225 is a term since it is odd and the sum of its coreful divisors is A057723(99225) = 201600 > 2 * 99225.
		

Crossrefs

Intersection of A005408 and A308053.
Subsequence of A321147.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[1, 10^6, 2], s[#] > 2*# &]

A339938 Odd non-coreful abundant numbers: the odd terms of A308127.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 75075, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 105105
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2020

Keywords

Comments

First differs from A112643, A129485 and A249263 at n = 28.

Examples

			15015 is a term since it is odd and the sum of its non-coreful divisors is A308135(15015) = 17241 > 15015.
		

Crossrefs

Intersection of A005408 and A308127.
Cf. A308135.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); fc[p_, e_] := f[p, e] - 1; s[1] = 0; s[n_] := Times @@ (f @@@ FactorInteger[n]) - Times @@ (fc @@@ FactorInteger[n]); Select[Range[1, 10^5, 2], s[#] > # &]

A357697 Odd cubefree abundant numbers.

Original entry on oeis.org

1575, 2205, 3465, 4095, 5355, 5775, 5985, 6435, 6825, 7245, 8085, 8415, 8925, 9135, 9555, 9765, 11025, 11655, 12705, 12915, 13545, 14805, 15015, 16695, 17325, 18585, 19215, 19635, 20475, 21105, 21945, 22365, 22995, 23205, 24255, 24885, 25935, 26145, 26565, 26775
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2022

Keywords

Comments

First differs from A333950 at n = 1258. Terms that are not in A333950 include 8564325, 8565795, 8567325, ... and terms of A333950 that are not here include 1126125, 2096325, 2207205, ... .
The numbers of terms not exceeding 10^k, for k = 4, 5, ..., are 16, 125, 1127, 11734, 116911, 1162781, 11638566, 116342286, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00116... .

Examples

			1575 = 3^2 * 5^2 * 7 is a term since it is odd and cubefree and sigma(1575) = 3224 > 2*1575.
		

Crossrefs

Intersection of A004709 and A005231.
Intersection of A005408 and A357695.
A112643 is a subsequence.
Cf. A000203 (sigma), A333950.

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1); q[1] = 0; q[n_] := AllTrue[(fct = FactorInteger[n])[[;;, 2]], # < 3 &] && Times @@ f @@@ fct > 2*n; Select[Range[1, 30000, 2], q]
  • PARI
    is(n) = {my(f); if(n%2 == 0, return(0)); f = factor(n); (n==1 || vecmax(f[,2]) < 3) && sigma(f, -1) > 2};
Showing 1-4 of 4 results.