cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333966 Positive integers where the number of triples of divisors (d1, d2, d3) such that d1 < d2 < d3 < 2*d1 and each pair of these divisors is pairwise coprime, sets a new record.

This page as a plain text file.
%I A333966 #19 Aug 01 2020 01:17:35
%S A333966 1,60,280,420,840,1260,2520,6930,9240,13860,27720,55440,60060,120120,
%T A333966 180180,240240,360360,720720,1021020,1801800,2042040,2282280,2762760,
%U A333966 3063060,4084080,4564560,6126120,12252240,19399380,24504480,30630600,36756720,38798760,58198140,77597520
%N A333966 Positive integers where the number of triples of divisors (d1, d2, d3) such that d1 < d2 < d3 < 2*d1 and each pair of these divisors is pairwise coprime, sets a new record.
%C A333966 Records are 0, 1, 2, 3, 4, 5, 8, 9, 11, 13, 19, ...
%C A333966 Are terms > 4564560 products of primorials (cf. A025487)? Terms 4564560 < k <= 54765047434897800 are.
%C A333966 In a triple (d1, d2, d3) such that lcm(d1, d2, d3) = d1*d2*d2 <= k we must have d1^3 < k. Proof: Suppose d1^3 >= n. Then d1 * d2 * d3 > n since d2 > d1 and d3 > d1.   Since any pair is coprime  d1 * d2 * d3  = LCM(d1,d2,d3) is a divisor of n. A contradiction. - _David A. Corneth_ and _Amiram Eldar_, Jul 28 2020
%H A333966 David A. Corneth, <a href="/A333966/a333966_1.gp.txt">records; number of such triples in divisors of a(n)</a>
%e A333966 280 has two such divisor triples; (4, 5, 7) and (5, 7, 8) and no number less than 280 has at least two such triples so 280 is in the sequence.
%o A333966 (PARI) upto(n) = { v = vectorsmall(n); for(i = 2, sqrtnint(n, 3), for(j = i + 1, min(sqrtint(n \ i), 2*i-2), g = gcd(i, j); if(g == 1, l = i * j / g; for(k = j + 1, min(2*i-1, n \ (i*j)), if(gcd(l, k) == 1, p = l*k; forstep(m = p, n, p, v[m]++ ); t++ ))))); my(res=List(1), r=v[1]); for(i=2, #v, if(v[i]>r, r=v[i]; listput(res,i))); res }
%Y A333966 Cf. A336442, A336443, A336628, A336629.
%K A333966 nonn
%O A333966 1,2
%A A333966 _David A. Corneth_, Jul 22 2020