This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333974 #21 Nov 19 2023 21:17:23 %S A333974 1,3,4,3,7,12,5,3,8,21,6,12,15,15,28,3,31,24,23,21,20,6,13,12,28,15, %T A333974 24,15,46,84,7,3,12,93,35,24,20,69,60,21,25,60,44,6,56,39,14,12,30,84, %U A333974 124,15,84,24,42,15,92,138,11,84,117,21,40,3,105,12,121,93 %N A333974 Eventual period of A007660 modulo n. %C A333974 Multiplicative: If n = p^x * q^y * ... for distinct primes p,q,... then a(n) = a(p^x) * a(q^y) * ... %H A333974 David A. Corneth, <a href="/A333974/a333974.gp.txt">PARI program</a>. %F A333974 a(n) | a(k*n), k=2,3,... %e A333974 a(1) is trivially 1. %e A333974 For n=2 the sequence is 0, {0,1,1}, {0,1,1}, hence a(2) = 3. %e A333974 For n=3 the sequence is 0, {0,1,1,2}, {0,1,1,2}, hence a(3) = 4. %e A333974 For n=4 the sequence is 0,0,1,1, {2,3,3}, {2,3,3}, hence a(4) = 3. %e A333974 For n=5 the sequence is 0, {0,1,1,2,3,2,2}, {0,1,1,2,3,2,2}, hence a(5) = 7. %o A333974 (PARI) See Corneth link \\ _David A. Corneth_, Sep 04 2020 %K A333974 nonn,mult %O A333974 1,2 %A A333974 _Isaac Kaufmann_, Sep 03 2020 %E A333974 More terms from _Jinyuan Wang_, Sep 04 2020