cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333976 Number of pairs of divisors of n, (d1,d2), such that d1 <= d2 and gcd(d1,d2) > 1.

This page as a plain text file.
%I A333976 #14 Jan 01 2021 14:23:10
%S A333976 0,1,1,3,1,5,1,6,3,5,1,13,1,5,5,10,1,13,1,13,5,5,1,25,3,5,6,13,1,22,1,
%T A333976 15,5,5,5,32,1,5,5,25,1,22,1,13,13,5,1,41,3,13,5,13,1,25,5,25,5,5,1,
%U A333976 55,1,5,13,21,5,22,1,13,5,22,1,60,1,5,13,13,5,22,1,41,10
%N A333976 Number of pairs of divisors of n, (d1,d2), such that d1 <= d2 and gcd(d1,d2) > 1.
%F A333976 a(n) = Sum_{d1|n, d2|n, d1<=d2} (1-[gcd(d1,d2) = 1]), where [ ] is the Iverson bracket.
%e A333976 a(7) = 1; (7,7)
%e A333976 a(8) = 6; (2,2), (2,4), (2,8), (4,4), (4,8), (8,8)
%e A333976 a(9) = 3; (3,3), (3,9), (9,9)
%e A333976 a(10) = 5; (2,2), (2,10), (5,5), (5,10), (10,10)
%t A333976 Table[Sum[Sum[(1 - KroneckerDelta[GCD[i, k], 1]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, n}], {n, 100}]
%Y A333976 Cf. A275387 (same with d1<d2), A337298.
%K A333976 nonn
%O A333976 1,4
%A A333976 _Wesley Ivan Hurt_, Jan 01 2021