This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333978 #90 Sep 24 2022 15:45:17 %S A333978 1,2,4,6,8,12,16,18,24,32,36,48,54,64,72,96,108,120,128,144,162,192, %T A333978 216,240,256,288,324,360,384,432,480,486,512,576,600,648,720,768,864, %U A333978 960,972,1024,1080,1152,1200,1296,1440,1458,1536,1728,1800,1920,1944,2048 %N A333978 Numbers of the form b_1 * b_2 * ... * b_t, where b_1 = 1 and b_(i + 1) - b_i = 0 or 1. %C A333978 This sequence gives the distinct values in A284001, sorted. %C A333978 If m and k are in this sequence, then so is their product m*k. %C A333978 If a prime p divides a(n), then so does p!. %C A333978 A001013 is a subsequence. %C A333978 Define a set S of polynomials by: (i) 1 is in S; (ii) if P is in S, then x*P and dP/dx are in S; (iii) if the repeated application of (i) and (ii) fails to prove that P is in S then P is not in S. This sequence enumerates the elements of S of degree 0. - _Luc Rousseau_, Aug 20 2022 %C A333978 Numbers k divisible by A102068(k) (or in other words, numbers k divisible by h(k)! where h(k) is the largest prime factor of k). - _David A. Corneth_, Aug 20 2022 %H A333978 Michael S. Branicky, <a href="/A333978/b333978.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Peter Kagey) %e A333978 The first 11 terms can be written as %e A333978 1 = 1 %e A333978 2 = 1 * 2 %e A333978 4 = 1 * 2 * 2 %e A333978 6 = 1 * 2 * 3 %e A333978 8 = 1 * 2 * 2 * 2 %e A333978 12 = 1 * 2 * 2 * 3 %e A333978 16 = 1 * 2 * 2 * 2 * 2 %e A333978 18 = 1 * 2 * 3 * 3 %e A333978 24 = 1 * 2 * 3 * 4 or 1 * 2 * 2 * 2 * 3 %e A333978 32 = 1 * 2 * 2 * 2 * 2 * 2 %e A333978 36 = 1 * 2 * 2 * 3 * 3 %o A333978 (SWI-Prolog) %o A333978 main :- iter(1). %o A333978 iter(K) :- %o A333978 (legal(K * x ^ 0) -> (maplist(write, [K, ', ']), flush_output) ; true), %o A333978 KK is K + 1, iter(KK). %o A333978 legal(1 * x ^ 0). %o A333978 legal(K * x ^ N) :- %o A333978 NN is N + 1, 0 is K mod NN, KK is K / NN, %o A333978 legal(KK * x ^ NN). %o A333978 legal(K * x ^ N) :- %o A333978 ((K = 1, N = 1) ; (N > 1)), NN is N - 1, %o A333978 legal(K * x ^ NN). %o A333978 % _Luc Rousseau_, Aug 20 2022 %o A333978 (Python) %o A333978 import heapq %o A333978 from math import factorial %o A333978 from sympy import nextprime %o A333978 from itertools import islice %o A333978 def agen(): # generator of terms %o A333978 oldv, h, primes, nextp, nextfact = 0, [(1, 1)], [], 0, 0 %o A333978 while True: %o A333978 v, maxp = heapq.heappop(h) %o A333978 if v != oldv: %o A333978 yield v; oldv = v %o A333978 while nextfact < v: %o A333978 nextp = nextprime(nextp); nextfact = factorial(nextp) %o A333978 primes.append(nextp); heapq.heappush(h, (nextfact, nextp)) %o A333978 for p in primes: %o A333978 if p <= maxp: heapq.heappush(h, (v*p, max(maxp, p))) %o A333978 else: break %o A333978 print(list(islice(agen(), 60))) # _Michael S. Branicky_, Aug 20 2022 %o A333978 (PARI) is(n) = if(n==1, return(1)); my(f = factor(n), p = f[#f~, 1]); n%p! == 0 \\ _David A. Corneth_, Sep 05 2022 %Y A333978 Cf. A001013, A003586, A006530, A102068, A284001, A334636. %K A333978 nonn,easy %O A333978 1,2 %A A333978 _Peter Kagey_, Sep 20 2020