This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A333996 #46 Oct 14 2023 11:34:05 %S A333996 0,1,3,7,11,17,23,31,40,50,60,72,84,98,113,129,145,163,181,201,222, %T A333996 244,266,290,315,341,368,396,424,454,484,516,549,583,618,654,690,728, %U A333996 767,807,847,889,931,975,1020,1066,1112,1160,1209,1259,1310,1362,1414 %N A333996 Number of composite numbers in the triangular n X n multiplication table. %C A333996 The number of pairs (i,j) with 1 <= i <= j <= n and i*j composite. - _Peter Kagey_, Sep 24 2020 %F A333996 a(n) = A000217(n) - A000720(n) - 1. - _David A. Corneth_, Sep 08 2020 %F A333996 a(n) = A256885(n) - 1. - _Michel Marcus_, Sep 09 2020 %F A333996 a(n+1) - a(n) = A014684(n+1). - _Bill McEachen_, Oct 30 2020 %e A333996 There are a(7) = 23 composite numbers in the 7x7 triangular multiplication table with the hypotenuse being the Square numbers: %e A333996 1 2 3 4* 5 6* 7 %e A333996 4* 6* 8* 10* 12* 14* %e A333996 9* 12* 15* 18* 21* %e A333996 16* 20* 24* 28* %e A333996 25* 30* 35* %e A333996 36* 42* %e A333996 49* %t A333996 Array[Binomial[# + 1, 2] - PrimePi[#] - 1 &, 53] (* _Michael De Vlieger_, Nov 05 2020 *) %o A333996 (PARI) a(n) = binomial(n+1, 2) - primepi(n)-1 \\ _David A. Corneth_, Sep 08 2020 %o A333996 (Python) %o A333996 from sympy import primepi %o A333996 def A333996(n): return (n*(n+1)>>1)-primepi(n)-1 # _Chai Wah Wu_, Oct 14 2023 %Y A333996 Cf. A014684 (first differences), A333995, A108407, A000720, A000217, A256885, A334454. %K A333996 nonn,easy %O A333996 1,3 %A A333996 _Charles Kusniec_, Sep 05 2020