This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334002 #22 Dec 19 2024 09:11:40 %S A334002 1,2911,4768673,7022359583,10021992194369,14143261515284447, %T A334002 19872369301840986112,27873182693625548898079, %U A334002 39067130344394503972142977,54740416599810921320592441119,76692291658239649098972455530913,107441842254735898225957962027174559,150517199699838971875005120330439121217 %N A334002 Number of spanning trees in the graph P_7 x P_n. %H A334002 Seiichi Manyama, <a href="/A334002/b334002.txt">Table of n, a(n) for n = 1..200</a> %H A334002 Vaclav Kotesovec, <a href="/A334002/a334002.txt">Generating function</a> %H A334002 <a href="/index/Rec#order_48">Index entries for linear recurrences with constant coefficients</a>, order 48. %t A334002 a[n_] := Resultant[ChebyshevU[n - 1, x/2], ChebyshevU[6, (4 - x)/2], x]; Array[a, 13] (* _Amiram Eldar_, May 04 2021 *) %o A334002 (Python) %o A334002 # Using graphillion %o A334002 from graphillion import GraphSet %o A334002 import graphillion.tutorial as tl %o A334002 def A116469(n, k): %o A334002 if n == 1 or k == 1: return 1 %o A334002 universe = tl.grid(n - 1, k - 1) %o A334002 GraphSet.set_universe(universe) %o A334002 spanning_trees = GraphSet.trees(is_spanning=True) %o A334002 return spanning_trees.len() %o A334002 def A334002(n): %o A334002 return A116469(n, 7) %o A334002 print([A334002(n) for n in range(1, 15)]) %Y A334002 Row m=7 of A116469. %K A334002 nonn %O A334002 1,2 %A A334002 _Seiichi Manyama_, Apr 12 2020